Safety Argument based on GSN for Automotive Control Systems

Yutaka Matsubara Nagoya University yutaka@ertl.jp 02.26.2014

Agenda

- 1. Safety argument in ISO26262
- 2. Requirements related to safety argument
- 3. Goal Structuring Notation(GSN)
- 4. Examples of GSN
- 5. Discussion
- 6. Conclusion

Safety argument in ISO 26262

Product argument

 A safety argument that argues safety based directly on the features of the item implemented.

Process argument

 A safety argument that argues safety based on the features of the development and assessment process.

We focused on product argument for safety of an Electric Power Steering(EPS) control system.

EPS control system

Main functions

- EPS uses an electric motor to assist the driver of a vehicle.
- Sensors detect the position and torque of the steering column, and an ECU applies assistive torque via the motor.

• This allows varying amounts of assistance to be applied depending on driving conditions.

Our activities

Hazard analysis and risk assessment,

 Specifying safety goals, functional safety requirements(FSRs), and technical safety requirements(TSRs).

Verification and Validation of FSRs and TSRs

http://www.ni.com/white-paper/4204/en/ Notice: This diagram is not related to real products.

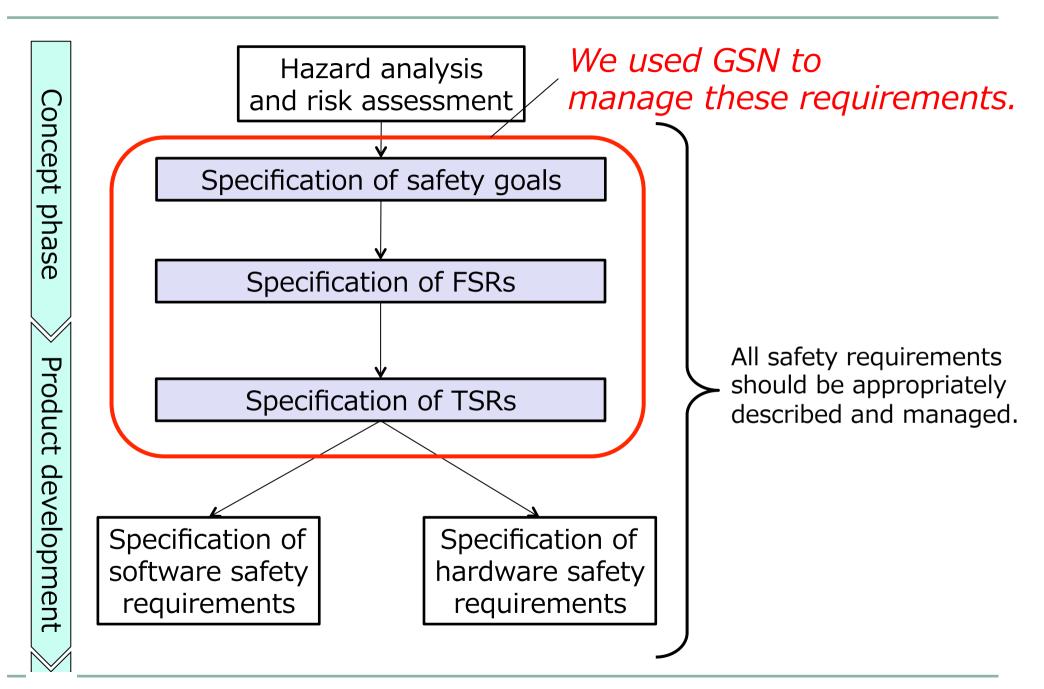
current

Torque sensor

Assist torque

Requirements related to safety argument

Safety Case


- The purpose of a safety case is to provide a clear, comprehensive and defensible argument, supported by evidence to quarantee safety of an item.
- A safety case for ASIL (A), B, C or D should be generated as a work product during the safety lifecycle (part.2-6.4.6).

Safety goals and other related Safety Requirements Safety Argument ISO 26262 Workproducts

Management of Safety Requirements

- Objectives are to ensure
 - the correct specification of safety requirements with respect to their attributes and characteristics, and
 - consistent management of safety requirements during the safety lifecycle.
- To achieve the above objectives, requirements of management of safety requirements are listed in part. 8 sec. 6.

Structure of safety requirement

Management of safety requirements

To comply with the followings, appropriate notation and management techniques are required.

a) Hierarchical structure

 The safety requirements must be structured in several successive levels.

b) Organizational structure

 The safety requirements of each level are grouped together, which usually corresponds to the architecture.

c) Completeness

 The safety requirements at one level fully implement all of the safety requirements of the previous level.

ISO 26262:part 8 ,clause 6.4.4.3

Management of safety requirements(cont.)

d) External consistency

 Multiple safety requirements must not contradict each other.

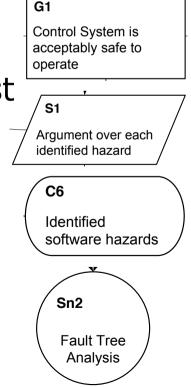
e) No duplication

 The contents of the safety requirements are not repeated in any other safety requirements at a different level of the hierarchical structure.

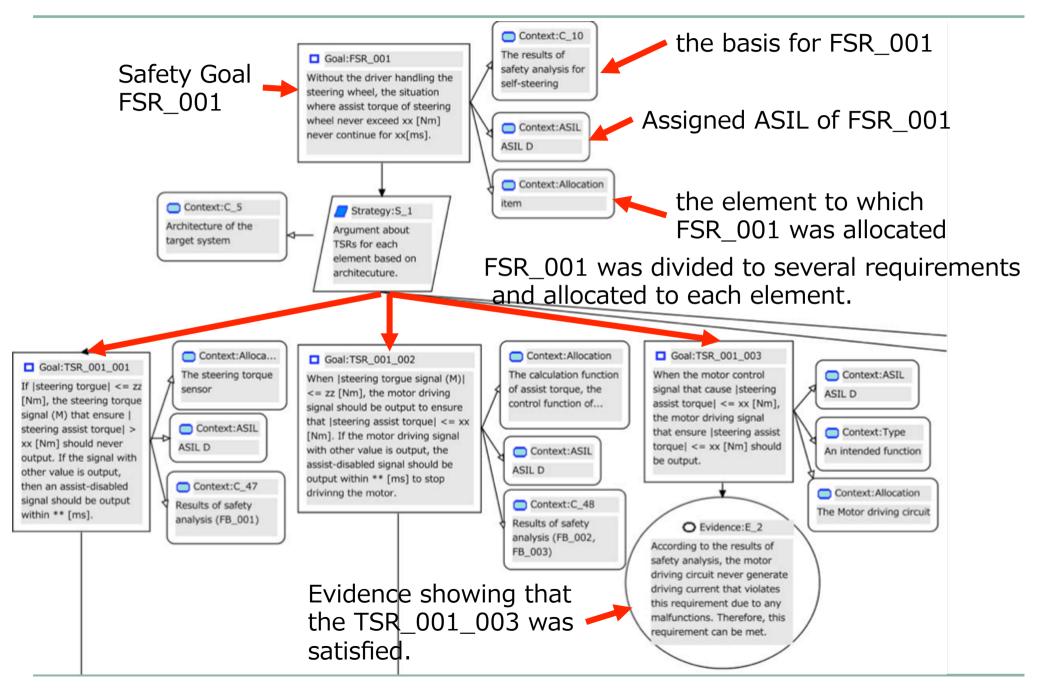
f) Maintainability

 The set of requirements can be easily modified or extended, e.g., by the introduction of new versions of requirements or by adding/removing requirements from the set of requirements.

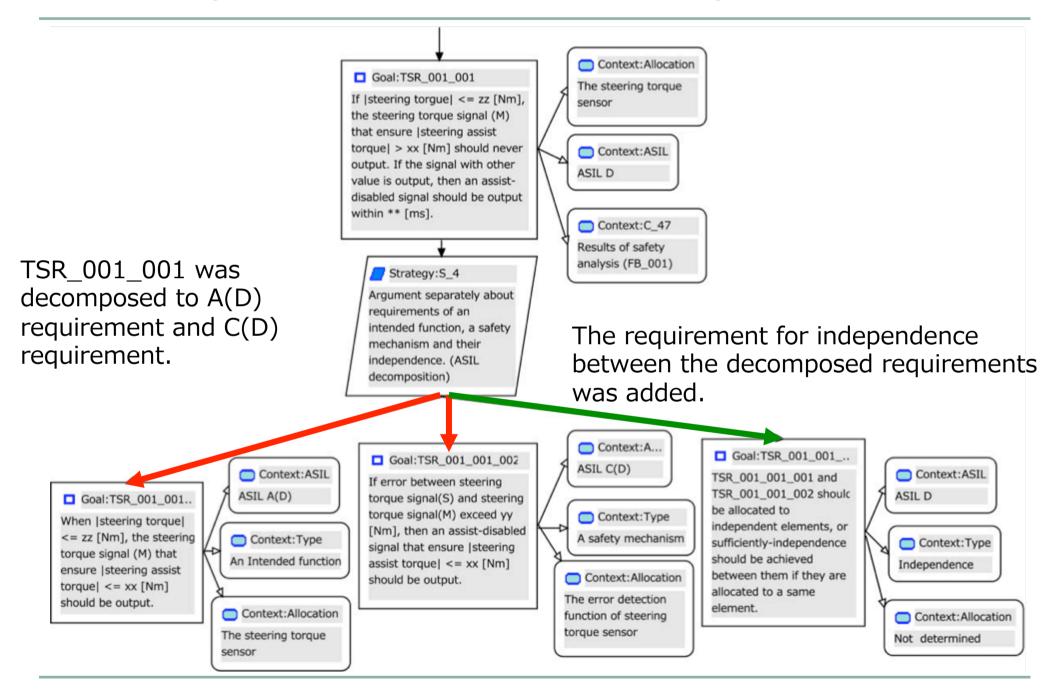
How can we achieve the above requirements?


Goal Structuring Notation(GSN)

What's GSN


- GSN is a graphical argument notation.
- It can be used to document explicitly the elements and structure of an argument and the argument's relationship to evidence.

Main notations


- Goal(Requirement): the claims of the argument, or the safety objectives that must be addressed to assure safety.
- Strategy(Argument): how the evidence indicates compliance with the requirements.
- Context: identifying the basis for the argument presented.
- Solution(evidence): evidence to guarantee that a goal could be satisfied.

Example of GSN: Organizational structure

Example of GSN: ASIL decomposition

Good points of GSN compared to natural languages

- The relationships between a goal and sub-goals could be clearly described by argument elements. → Req. b)
- The completeness of the safety requirements specifications becomes obvious. → Req. c)
- Duplication and contradiction of safety requirements specifications could be avoided by reviewing the relationships between the specifications. → Req. d),e)
- A hierarchical structure is easily achieved by a system element. → Req. a)

GSN was one of appropriate techniques for describing a safety case and management of safety requirements.

Weak points

- The semantics of the context elements should be restricted because the elements can be used with various meanings. → Req. f)
- Tool cooperation should be improved to ensure traceability.
 - For example, the GSN description tool should work with the traceability management tools, hazard analysis tools, system architectures, and so on.
- For ASIL C or D requirements, other semiformal or formal methods may be needed because contents of each element of GSN are described in natural languages.

Requirements for notation of safety requirements

Notation methods

ISO 26262-8:2011, Table.1

	Methods		ASIL			
wiethods		A	В	С	D	
1a	Informal notations for requirements specification	++	++	+	+	
1b	Semi-formal notations for requirements specification	+	+	++	++	
1c	Formal notations for requirements specification	+	+	+	+	

Practical situation in Japan

highly recommended

 The safety requirements have been described in <u>natural languages</u> in many cases.

Informal notation

To develop items with ASIL C or D, semi-formal notations should be used instead of natural languages.

Semi-formal notation methods

Definition of "Semi-formal" notation

 Descriptive techniques where the syntax is completely defined but where the semantics definition can be incomplete.

Examples

- System Analysis and Design Techniques (SADT)
- Unified Modeling Language (UML)
 - Widely used in practical situation

These methods are suitable for design of item and software, but not suitable for description of requirements.

→ A method that is suitable for description of safety requirements is required.

Conclusion

- We presented a case study of a safety argument description for the EPS control system by GSN.
- We compared the capacities of natural languages and GSN for describing the safety case and management of safety requirements specifications.
- Based on the case study, we confirmed that GSN was an appropriate technique for these purposes.
- However, some future works were found to spread GSN in practical situations.

Thank you for your attention. Any question?

References

- 1. ISO: ISO 26262:2011 Functional safety road vehicles. ISO, (2011)
- 2. Goal Structuring Notation Working Group: GSN Community Standard Version 1. http://www.goalstructuringnotation.info/, (2011)
- 3. B. Palin, D. Ward, I. Habli and R. Rivett: ISO 26262 safety cases: compliance and assurance. In: IET Intl. System Safety Conf., (2011)
- 4. Y. Matsuno: D-Case Ediotor: http://www.il.is.s.u-tokyo.ac.jp/deos/dcase/