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Burn-In Strategy for Deep Reinforcement Learning
Using Spiking Neural Networks

«T. Iwata, S. Yoshioka, H. Takigasaki and D. Miki (Chiba Institute of Technology)

Abstract— Deep reinforcement learning offers high performance but with high energy costs. Spiking neural
networks (SNNs) improve energy efficiency but suffer instability in DRL. We propose embedding SNNs in
TD3 actors with a burn-in strategy inspired by Recurrent Experience Replay in Distributed Reinforcement
Learning, achieving improved training stability and higher rewards in OpenAI Gym tasks.

Key Words: Deep Reinforcement Learning, Spiking Neural Networks, TD3, Burn-in Strategy
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Estimating Flock Size and Flight Speed based on Ecological Research Video
of Streaked Shearwaters

*A. Yazu, S. Ideue, S. Tanaka and T. Hatanaka (The University of Fukuchiyama),
A. Hondo (Kyoto Prefectural Nishimaizuru Senior High School)

Abstract— In this study, we propose a detection system for monitoring flocks of Streaked Shearwaters
around Kanmuri Island in Maizuru City. We examine two different approaches for analyzing video data
collected by the Kanmuri Island Ecological Survey Group. The first approach utilizes a deep learning-based
method, employing the well-known YOLO framework for target object detection and tracking. The second
approach is based on background subtraction between consecutive frames to identify flying objects in the
scene. Additionally, we estimate the flying speed of the detected objects to infer the size and movement
characteristics of the flocks. The estimated speeds are consistent with the known flight speed of Streaked
Shearwaters, supporting the validity of the proposed method.

Key Words: Streaked Shearwater, object detection, target tracking, flock size estimation, flight speed

estimation.
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YA L, RT3 -DOFEEEICH I T
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M LRk 2 PSS ot ahtng. A
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—ETEHBOMEOBRHLARETH 5. Tz, MHL
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HERXH DT 2MAEEE T 5. BEAOEMICOWT
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Bz L Tws. SHENICHROMEKRIFEET 2
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Class probability map
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AWFETIE, IABHEICBE T YOLOVS 2 L
72. YOLOvS 1%, 2023 12 Ultralytics #LA5\BH L 7=
YOLO O N—2 a > TH%. YOLOvS I, ®mIiciiD
N IR=V 3w 77 —FT7F v 2HRAL, ¥
e A oMRER M EXETwWb. 7z, KE
CHEREE DN TV ADBREILIhTWwd e X, )
TNRA DR DB Y § 220 TE
WERMEZ D EINTWDS. X512, YOLOVS I3
BOFEAEEEAET VR L, iR HEREEFI2IG
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W72 YOLOVS 1 2023 FEICHR S LTV 553, 2025
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YOLOvVS8 T, Mt X 3 7 7 A ICHHFEEDIPEE L
THHIFEEADT Xty F (COCO T—&Ev b)
RS2 2 TE 5. COCO(Common Objects in
COntext) 7—&t v M, VSRS /A T — =
Y, ¥ avERBREDRAZ LS HWLNE K
L EGRT— &2y v THB. COCOTF—XEv b
120 33 FROERDSIEREI N TE D, 20 HRDERIC
BYIARKH, 7 Xy F—vay, Ty TP arnRkR
I DDDT ) F—avyifiFshTtwns. COCO

Table 1: COCO 7—Z+t v t O—Hf
ID | Z~0v

A (person)

HiLH (bicycle)

HEIH (car)

F— b N4 (motorcycle)
AT (airplane)

NZ (bus)

HEL (train)

b7 w7 (track)

A— 1 (boat)

{E51% (traffic light)

10 | HK#2 (fire hydrant)

11 | FIEEE# (stop sign)

12 | BE#H X — & — (parking meter)
13 | X F (bench)

14 | & (bird)

15 | J# (cat)

16 | K (dog)

0 O Uik W N+~ O

Nej

T =&ty bDO—#% Table 1 17”3, A HERE, H
REYDSFEHEDOT— Xty FEEIATVS.
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3. ¥, BHEXNTORWELRZ V., BFEOF—X
v M eFEEETATEYEIR S R WD, Il
HO¥EF— &ty F2IERL 7.
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person 0.47
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2R AICHE L 2R 500 RS LTy 7 —> 2
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THREIR TV, 2EI2E, YOLOVS DEFILDOH
THRE L HEEDNT V20372 YOLOvSm Z i L
7= F7z, FEEEZ 300 M EERE L. EEINT



rock 0,32,°0.78

4
I REack 0,52k"0 yrock k0%
rock 0.71

Fig. 3: ERO H JifiHR

id:564 bird 079242

id:727 bird 0.58

Fig. 4: Bi#H O 1 1#5R O —F8
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Y. Eg3%Eét FHF—X LTRELET
~ULE DIz FIHIThih, ERECREIATY
60)763‘:%9#%. Lﬁ)b, Fig. 4 DFERTIX, RITL T
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b5, 22T, BEECHEEEZZEL, MR
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N UT 4 TRy ZATHENH S, THE] »
MK %52 28MEDZ v TH 3. [SHEED 0128
m&& N UF 4 PRy 72 20HHE TER T

AIREME S K, BHEED 1 1EWIEY, NY VT4
/7+/7X®¢Emﬁmﬂ%®F%wJ%ﬁbfm
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F7 4V MEZ 0.5 THB. MEHEROKEEL FIF3
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AP FEENTE2E T I2RNERD S.

%72, NMS (Non-Maximum suppression) B % |
AL, &7 722k, ~RBEFEEOSOEEYL, £
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HAETER>TVABHZHIFRLTWL . ToU BfE & X,
HiEOPr Zzoftoto®ER h BE (BlE) 2RIK
FOZ T, BEELFEMRC0, 1] OHHDOERTRE
5. IoU BMED 012IWIE Y, 2 00PN TEXR - T
W] ZEKRL, ToU BIMED 11EWEYE, Nv v
T4 VTR ZADHEIE TER-oTW3 ] ZEKT
%. IoUDF 7 4L MHEIX 045 T, BEEZES TI2X
COfEiE EFRENH L. FEELFEIL XS, IoU
% 0.5, 0.6, 0.65 LEEZZEE L THIXHE.

{EHEE ¢ BIfEZ 2 L - 0RO —HBl % Fig.5 12

id: /7 bird 0.73 1d:183 bird 0.72

Fig. 5: {S%EE:0.7, Bf#:0.65

1d:285 bird 0.72

1d:290 blrgg(% rd 0.67:293 bird 0.72

Fig. 6: {SHZ:0.6, BE:0.5

RY. Fig. 5%, EHE 0.7, 065 2 ¥HE58 5
WEREA L TH DX -EROERTHL. ¥55
DEMEDEL LT XY T4 YRy 7 A0
HEhkikolz. 252, HEDO¥EEF—X%
HOTHGEZH T2, FEESCEELTEDMEIC
REL, 10 [HOMAEEIT-72. ZOMER, Fig. 6 1R
I{EHEE 0.6, BIME 0.5 DFRED & T ITE T 3 1L/
TEDBONTYT 4 IRy I ABPENTELZ e
R A

BINL 72081k %2 R 3 bird  rock AT VT 4
YRy PANWERT IR, 1DODANT YT
YRy 7R LCHEYNCHH TS LarL, £/
DED S B PPN T Wi, Z g, (S E
PRV DICERE LTSN ATRENES, BfED
METCHIMOYERDNY VF 4 Y TRy 7 A ERS
THH IR o ZAlREERE X H5h 5.
SHEOMEL LT, EHEHECBEEZFAEL, KM
@%ﬁ’z@ﬁﬁ:"cnunaéhﬁi)‘%ﬁﬁ j—éﬁ‘gip(‘b%
F 72, KR ORRPYEDORHESPERIRER (R
aY b IRL, FEORMEEICXZHDE %&Z)k
ié%@#%\ﬁb BT X = RBERT — X
DEBEMBEN D =TT 2 BN DH 5.

2.3 BHF
AWFETIE, YOLOVS IZ k7 v ¥ ¥ VIR AT
222T, B3 7L —LAZ L OYRBHICE S
3, RRAERE R L YiE e ER T2 ) 7
NEA LWRHGBI S R T LR LTz, RO AT LT
&, YOLOV8 I & o TH 7 L — A THH X h Wik
XL, SORT (Simple Online and Realtime Tracking)
% Deep SORT (Deep Simple Online and Realtime
Tracking), # %W ByteTrack REDA Y T4 V<
NFATI2 7 T x 07 70a) X nelAE
b¥E2ZET, WK —ED ID 5L, #Hil
727 L — L TCHE—YIMEZ BT 5.



2.4 MOT(Multiple Object Tracking) 7 #—<
\y I\

MOT 7 #—~v M, MRBEHZ 2712813257 —
X DIEHE IR TERT, 2D 7 +—~ v M, VEA»EIHE
REFED S — 7 Y ANTED XS IZEWT WS, B
N2 BEERETSZ. MOT 74—~y MNZ, &7
L — L Z itk ofiEiilEd e ider s 2 BT,
WHE, DROXSBAIV<RXKYIDDTFA N7 740
FERTHEEINS. SEX, 7V—2FS, F 7=
ZMID, XOUYT 4 Y TELD ¢ R, No VT4 v
TRy 72y FERE, N VT 4 YRy ZADIE, AN
VT4 VI Ry JRADEE, FEENH XYY
THHEATWS., %B¥D29o1%, 7+—~<v b ET
T 2MHETHS. MOT 74—~y F2FHLTH
HNENEZTFANT7 74 LD % Table 2 IR,

Table 2: *+ 7Y =7 b OBEIHE T — X
X Y W H

Table 3: 7Y =7 b OHEERTHE

Obj ID [ Class | Frame Center (X, Y) px/s km/h
1 rock 2 (1025.45, 521.30) 57.48 1.94
2 bird 2 (1335.25, 736.07) 1340.20 45.23
4 bird 2 (1173.22, 724.51) 1255.12 42.36
5 bird 2 (891.03, 760.16) 519.45 17.53
6 bird 2 (1681.82, 762.01) 1297.22 43.78
1 rock 3 (1026.16, 521.91) 55.47 1.87
2 bird 3 (1311.64, 731.19) 1433.71 48.39
4 bird 3 (1151.70, 722.59) 1285.20 43.38
6 bird 3 (1663.45, 761.95) 1091.88 36.85
1 rock 4 (1025.88, 522.80) 55.86 1.89
2 bird 4 (1284.18, 726.15) 1660.32 56.04
4 bird 4 (1127.98, 721.33) 1412.91 47.69
6 bird 4 (1641.74, 760.57) 1293.70 43.66
1 rock 5 (1026.17, 522.77) | 17.34 0.59
2 bird 5 (1255.50, 723.06) 1715.50 57.90
4 bird 5 (1104.24, 720.40) 1412.60 47.68
6 bird 5 (1619.64, 757.56) 1326.38 44.77
1 rock 6 (1025.92, 522.74) 14.72 0.50
2 bird 6 (1228.24, 719.89) 1631.75 55.07

F ID Label Score
1 T 912.86 454.41 223.26 133.68 rock 0.90
1 2 1325.18 717.48 64.51 45.10 bird 0.73
1 3 1439.16 793.20 58.34 23.22 bird 0.68
1 4 1166.85 713.80 54.63 26.70 bird 0.68
1 5 852.07 745.11 95.28 32.05 bird 0.59
1 6 1676.83 733.55 53.34 52.20 bird 0.44
2 1 913.52 454.59 | 223.87 133.43 rock 0.90
2 2 1305.05 716.21 60.40 39.72 bird 0.66
2 4 1147.78 710.87 50.89 27.29 bird 0.69
2 5 857.40 746.25 67.26 27.82 bird 0.48
2 6 1655.16 734.11 53.31 55.80 bird 0.69
3 1 914.27 455.49 | 223.79 132.84 rock 0.90
3 2 1281.81 713.65 59.66 35.09 bird 0.69
3 4 1126.87 | 708.79 49.66 27.60 bird 0.68
3 6 1634.57 | 732.44 57.77 59.01 bird 0.77
4 1 914.36 456.46 | 223.04 132.69 rock 0.90
4 2 1256.75 710.51 54.86 31.29 bird 0.72
4 4 1102.45 706.44 51.05 29.78 bird 0.71
4 6 1610.08 731.47 63.33 58.19 bird 0.75
5 1 914.84 456.51 222.66 132.53 rock 0.89
5 2 1227.56 707.01 55.88 32.10 bird 0.74
5 4 1076.38 703.07 55.72 34.66 bird 0.75
5 6 1588.30 731.29 62.69 52.54 bird 0.72
6 1 914.67 456.52 | 222.51 132.44 rock 0.89
6 2 1200.29 702.50 55.91 34.79 bird 0.74
6 4 1052.35 | 699.51 56.70 40.24 bird 0.74
6 6 1560.92 730.31 64.64 41.37 bird 0.71
6 22 737.76 743.04 86.09 26.27 bird 0.53
7 1 913.48 456.13 | 223.77 132.41 rock 0.90
7 2 1172.61 700.32 57.00 35.64 bird 0.72

ko THih iR 7 -2 2 5icg 71 —
L TOMKORELREZEAE L. £3, 71—
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Bbhhd., HEHEZITWV, 7FAM 7740k
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MBI ZBHEIEORICIER T 2 2 L I3fFT X
W, ZZT, EE@IXFICX23BETHIIBL
CHEEEREET2 TEFEbD ) 2EELTWS Z L&l
12, ZOHHEICE > TW2BEKkERHT 3 2k
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MTERVIERETH 5.




NTY XALTHB MOG2 (Mixture of Gaussians) %
AnaigMEE 2 EZE L2, A4 IXFF R YR
TREDLD ] Z1To TV 2EED 5 —EMRE (EED 7
L—2HZr) TZL—LEHHL, ThEho 7L —
LI L THERESZHAT 5. Z0Eg% 2{EkL,

BZxDH 27 e HL RRLLEGRZIREL 2.
WIFER DOl LT, 3 7L —24, 10 7L —LTk
DY BAESNBAER % Fig.8, Fig9 IRy, Mt h
7oA A I XFF R ORITIE D H OB TRENT
W3,
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L, EOXIBAE—=RTEHOTWE R EEDHE
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3.2 ENEIRICEL B KDEH

ZOEGRZ HWT, BEMNICBIT2801 7L —24
WEI ¥ 7L RS 1 FOMNCEN S BEREZ SR L
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Fig. 10 \ZR7.

Fig. 10: ALFEASH

Fig. 10 TiX, L7 L —L EZFD 3 7L —LED#ED
POEA L I XFF R OFEEBOEM %, JTD
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ZLT IEEbh) IR 2 EEERS 21TETH
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B, HEEDAD S H 2#HPADOADBNXEZE L,
ZFIWXHNIAFTIXFEFRVDAEI Y Y P THUX
v, MHXEE 7L —25720) OBEHER S LIk
ETDHIENTEDLD, RICERESRUEDVELZ-TD,
WHDOEBD 7 L — a0 53 EERD, MRHHIPHZ R
ETBHIENTES. Tibb, 7L—alESLHE
BOHERDOFNFEBIC B 2RO D AT, BjH
2RI 2 EERBOHEEDFRETH 5. Fig. 10 1T/RL
7-EIE DAL, 2 7 L — 2 RBEETG RO Y 2 Uk
T, 1620 225 1678 DD 59 ¥ 7 L L fEEcE: H
L, ZOHFDEMADOHLOMEKERNE Z T, R
T334 FIXFFFYDOMEKEN TV TE B,

F7z, AAIXFF RV ORITEE A 30km/h T
HBHLWS e, ZOENE EOFEIGHIREEIEE
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FOBELEE (pixel/s) ZIE LRITHE L L2 15
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Table 4 3 H U 7= 8K O EEEHR O —FITDH 223,
ITRTOBHEENZAF IXFF R OEEERD S,
2 7L —LDBITH Y VNI REFEEE AT 1620
7R 1678 ¥ 27 2L OMEEEBUCHIR L, fEK
Behor v T2EBEITo 25, RHIDT7 L —
DZTH, B2 7L —aLET 75 I0F 82 P TH -

2REIGAN D B EENTRIT LTV 2 3R E TOFEBHERMAE S
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Table 4: 7 = 7 FEOHEEER

From ID | To ID | Speed (px/s) | Speed (km/h)
1 3 2045.26 29.87
1 9 1984.81 29.27
4 5 2046.51 29.89
5 8 2176.06 31.18
6 7 2064.10 30.06
6 10 2290.00 32.32
8 10 2107.25 30.49
9 11 1749.96 26.92

72, EBIWCHHRTa~ZEY LRSI Y b LR
Z 80P THo7=DT, ZOHETEMHLBELRNEE
THEARBEFARE B TEXRZEZONS.
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HT 32 THEHERIZ 1 2O Y F 4 YRy
JATHRHE T2 e TER. £, WIKEHDZD
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OREIEMEEH L, EE BT 2 E0MEICHD
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On Learning Inverse Kinematics for Robotic Arms
with Quaternionic Neural Networks

«T'. Hashimoto, T. Isokawa and K. Naotake (University of Hyogo)

Abstract— This study examines whether Quaternionic Neural Networks (QNNs) are suitable for learning
inverse kinematics mappings from joint rotation inputs. Although QNNs are theoretically well-suited for
representing 3D rotations, their practical effectiveness in this context remains unclear. To investigate this,
we use a 6-DoF URbe robotic arm and Jacobian data collected in MuJoCo to compare QNNs with standard
real-valued neural networks in approximating the Jacobian matrix. Experimental results did not show
significant performance improvements with QNNs. Nonetheless, this study provides empirical insights into
the limitations and challenges of using quaternion-based representations in rotation-related tasks in robotics
and contributes to a better understanding of model design for periodic input data.

Key Words: Neural Network, Inverse kinematics, Quaternion
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Fig. 2: Model architectures used in the numerical experiments.
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Fig. 3: Validation loss curves of the Neural Network (red) and Quaternion Neural Network (blue) under different
learning rates 7 and hidden layer sizes H. Each plot shows the average over 10 trials with different seeds.
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Pareto Set Estimation Using Clustering for Multi-Objective Multimodal
Optimization Problems

% Yuki Suzumura (The University of Electro-Communications), Yoshihiro Ohta (Mitsubishi
Electric Corporation) and Hiroyuki Sato (The University of Electro-Communications)

Abstract— In multi-objective optimization problems, multimodality often arises, where multiple distinct
solutions in the decision space correspond to the same point in the objective space, making accurate Pareto
set (PS) estimation challenging. This paper proposes a novel PS estimation method that applies clustering to
known solutions in the decision space and independently constructs local response surfaces for each cluster.
By selectively estimating PS using these cluster-specific models based on direction vectors, the proposed
method can capture multiple modes that conventional approaches fail to represent. Experiments using stan-
dard multimodal benchmark problems (MMF1-8 and LIRCMOP1-2) demonstrate that the proposed method
achieves higher estimation accuracy than conventional methods and effectively suppresses the generation of

dominated solutions.

Key Words: Multi-objective optimization, multimodal problem, Pareto set estimation, clustering, response

surface modeling
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Require: Known solution set P = {(x!, f1),(x2, f2),...,
(@, £N)}, a large unit vector set £ = {é,é2,...}
Ensure: Popoulation P’
Learning Process

1. F={f f%,..., FN} < Extract objective vectors (P)

2: X ={z',z2,..., 2V} « Extract variable vectors (P)
3:E+0 > Direction vectors of known solutions
4: for i+ 1,2,...,N do

5: et <« f/IF > Direction vector of known f?
6: E+EUel

7: end for

8: ax-model - Train PS model (&, X)

Estimation Process
Q<+ 0

10: for each é € £ do
11: & <+ x-model (é)

12: f+ f(e)

13: Q<+ QU (&, f)

14: end for

15: return P’ «Extract non-dominated (P U Q)

©

> Solutions generated by PS estimation

BT BNE &(RAL) ZHEE T 2 UHICEZE T 5. 11
fTEZ, HAANRZ bvé % Kriging €7 /L z-model 12
ATIL, MBS 2HEEZRARS bv e 21§85, 121TH
W&, HEREANZ Mvz & BB by fICAT)
L, HWBEME~Z b f 2155, 134THIE, HiLlw
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JilAl e ZZEZRHIHHED RS, 151THIX, BEHIOMRE
B P EERLUBES Q0 HIEHES P 2 L
THIT%.
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(b) Proposed Pareto set estimation

Fig. 2: Pareto set estimation of a multiodal problem
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Algorithm 2 Proposed Pareto Set Estimation

Algorithm 4 Select Target Clusters

Require: Known solution set P = {(z!, f!), (x2, f2),...,
(@™, £N)}, a large unit vector set £ = {é1,é2,...}
Ensure: Popoulation P’
Learning Process

1 F={f' f3, ..., FN} « Extract objective vectors (P)

2: X = {z!,2?,..., 2V} + Extract variable vectors (P)

3 E+ 0D > Direction vectors of known solutions
4: for i <+ 1,2,...,N do

5: et — /| F > Direction vector of known f?
6: E—EUet

7: end for

8: C ={C1,Ca,...} < CLUSTERING (&, X)

9: for each C} € C do

10: Ec,, <« Extract direction vectors (Cy)

11: Xc, + Extract variable vectors (C})

12: ¢, -model < Train PS model (¢, , Xc,)

13: end for .

14: &’ < PRIORITIZE DIRECTIONS (&)
PS Estimation

> Algorithm 3

15: Q<+ 0 > Solutions generated by PS estimation
16: for each é € £ do

17: C’ < SELECT TARGET CLUSTERS (€, C)> Algorithm 4
18: for each C}, € C’ do

19: & < xc, -model (€é)

20: f < Evaluation (&)

21: Q« QU (&, f)

22: if |Q| > || then

23: return P’ +Extract non-dominated (P U Q)
24: end if

25: end for

26: end for

Algorithm 3 Prioritize Directions

Require: A large unit vector set & = {el,e2,...,eleh)
Ensure: Prioritized unit vector set & R
&' + Pick extreme vectors with a element of 1 from &
while [£'] < |€] do

€ < Pick the farthest vector from E

E'+—E'Ueé
end while
return &’

NRZ ML éDBERINC e % £ T IRLENT 5.
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Require: A direction vector é, Cluster set C = {C1,Ca,...}
Ensure: Selected clusters C’

1: ¢+ 0

2: for each C}, € C do

3 if Direction range of cluster C}, involves é then

4: C'+ C'UCk
5 end if
6: end for
7: return C’
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Fig. 3: Clusters obtained by the proposed method
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Fig. 4: Known solutions and estimated ones obtained by the conventional method *
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Fig. 5: Known solutions and estimated ones obtained by the proposed method
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Fig. 6: Known solutions and estimated ones obtained by the conventional method *
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Fig. 7: Known solutions and estimated ones obtained by the proposed method

Table 1: HV values of the obtained solutions P’

MMF1 MMF2 MMF3 MMF4 MMF5 MMF6 MMF7 MMF8 LIRCMOP1 LIRCMOP2
Number of variables D 2 2 2 2 2 2 2 2 30 30
Number of known solutions N 98 28 31 48 40 98 48 48 40 40
Conventional Method 0.7214  0.7037  0.7060  0.4455 0.7096 0.7202 0.7229  0.3488 0.2269 0.3608
Proposed Method 0.7225 0.7140 0.7201 0.4481 0.7121 0.7196 0.7232 0.3502 - 0.3627
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