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7 ⽉ 10 ⽇(⽊) 
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共同研究が開始される！しまったとならないためにちょっと⽴ち⽌まってみませんか？ 

樋⼝ ⼈志（あらき知財綜合事務所(HIPP 知財事務所)弁理⼠ 

/福井⼤学客員教授/福井県⽴⼤学特命教授） 

14:30-15:00 特別講演１ 

社会に届く最適解：進化計算と産学連携が切り拓く可能性 

佐藤 寛之（電気通信⼤学） 

15:00-15:15 ディスカッション 

15:15-15:45 特別講演２ 

ニューロモルフィックコンピューティングとロボット

三⽊ ⼤輔（千葉⼯業⼤学） 
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1. スパイキングニューラルネットワークを⽤いた 深層強化学習における burn-in の適⽤
〇 岩⽥尭⼤，吉岡シャーン圭允，瀧ヶ崎広登，三⽊⼤輔（千葉⼯業⼤学） 

2. オオミズナギドリの⽣態調査のための動画に基づく群れのサイズと⾶⾏速度の推定
〇 ⽮頭安樹，井⼿上哲⼠，⽥中彰⼀郎，畠中利治（福知⼭公⽴⼤学）， 

本藤聡仁（京都府⽴⻄舞鶴⾼校） 

3. 四元数ニューラルネットワークによるロボットアームの逆運動学学習
○ 橋本尚典，礒川悌次郎，上浦尚武(兵庫県⽴⼤学)

4. 多⽬的最適化におけるクラスタリングによるマルチモダルパレートセット推定
〇 鈴村 祐貴(電気通信⼤学)，太⽥ 恵⼤(三菱電機株式会社)，佐藤 寛之(電気通信⼤学) 

18:00 閉会の挨拶 
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スパイキングニューラルネットワークを用いた
深層強化学習における burn-in の適用

○岩田尭大 吉岡シャーン圭允 瀧ヶ崎広登 三木大輔（千葉工業大学）
Burn-In Strategy for Deep Reinforcement Learning

Using Spiking Neural Networks

∗T. Iwata, S. Yoshioka, H. Takigasaki and D. Miki (Chiba Institute of Technology)

Abstract– Deep reinforcement learning offers high performance but with high energy costs. Spiking neural
networks (SNNs) improve energy efficiency but suffer instability in DRL. We propose embedding SNNs in
TD3 actors with a burn-in strategy inspired by Recurrent Experience Replay in Distributed Reinforcement
Learning, achieving improved training stability and higher rewards in OpenAI Gym tasks.

Key Words: Deep Reinforcement Learning, Spiking Neural Networks, TD3, Burn-in Strategy

1 はじめに
近年，深層強化学習（Deep Reinforcement Learning，

DRL）アルゴリズムの発展により，Atariゲームにお
いて人間を凌駕する性能が示されている [1]．また，囲
碁分野においても同様の成果が報告されている [2]．さ
らに，ゲーム領域を超えて，DRLは自律移動などのロ
ボット制御タスクにおいて顕著な可能性を示し，多様な
環境下で頑健な行動を学習可能である [3]．特に，Twin
Delayed Deep Deterministic Policy Gradient（TD3）
のような連続値制御アルゴリズムは，観測次元が多く，
行動が連続値で定義される環境において，安定かつ効
率的なポリシーの学習を可能にしている [4]．しかし
ながら，これらの手法は大規模な人工ニューラルネッ
トワーク（Artificial Neural Network，ANN）を持ち，
学習および推論時の電力消費が大きいことが知られて
いる [5]．このため，バッテリ駆動の自律ロボットや組
み込みデバイスへの適用には課題が残されている．そ
こで，人間の脳に着想を得たスパイキングニューラル
ネットワーク（Spiking Neural Network，SNN）が有
望な代替手段として着目されている．SNNは専用計算
素子上で高い電力効率を実現可能であり [6]，Deep Re-
inforcement Learning with Population-Coded Spiking
Neural Network for Continuous Control (PopSAN) に
おいては，アクター・クリティック型DRLアルゴリズ
ムのアクターネットワークを SNN に置き換えること
で，MuJoCo連続値制御ベンチマークタスク（Ant-v4,
Walker2d-v4, Hopper-v4, HalfCheetah-v4）における
歩行動作の学習に成功している [7]．また，六足ロボッ
トの歩行制御タスクでは，エネルギー消費をペナルティ
化することで，SNNベースの DRLアルゴリズムはエ
ネルギー効率の高い制御ポリシーを獲得できることが
示されている [8]．
一方，既存の SNNベースのDRLアルゴリズムにお
いて，学習の不安定さが課題となっている．本研究で
は，Recurrent Experience Replay in Distributed Rein-
forcement Learning（R2D2）[9]に着想を得たBurn-in
を組み込むことで TDターゲットの推定精度を向上さ
せ，学習を安定化する手法を提案する．リプレイバッ
ファに蓄積された膜電位に対して，現在のスパイキング

アクターネットワークのパラメータに基づき膜電位を再
計算し，より正確なTDターゲットを算出する．本研究
の有効性は，MuJoCo連続値制御ベンチマークタスク
（Ant-v4, Walker2d-v4, Hopper-v4, HalfCheetah-v4）
において評価し，既存の SNNベースのDRL手法と比
較して，平均最大報酬および学習の安定性の両面にお
いて優れた改善が確認された．
2 手法
本節は，(1)スパイキングアクターネットワーク，(2)

SNNの内部状態情報を格納する拡張リプレイバッファ，
(3) リプレイバッファから取り出した膜電位の陳腐化問
題に対処する Burn-in，および（4）膜電位の探索範囲
の縮小による学習効率の向上を目的とした膜電位の量
子化処理の四つの要素で構成される．ここで，本研究
におけるネットワークの構成を Fig.1に示す．
2.1 スパイキングアクターネットワーク
スパイキングアクターネットワークは，連続的な環
境観測を入力としてスパイク列を生成・処理し，最終的
に連続値の行動を出力する．まず，エンコーダモジュー
ルにおいて観測ベクトル s に対して重み付き線形変換
と非線形活性化関数を適用する．得られた信号と符号
を反転した信号を連結し，複数チャネルでポピュレー
ションコーディングを行う．この際，一様分布 U(0, 1)
に従うノイズを付加することで発火を促し，出力され
るスパイクの多様性を高める．続いて，スパイキング
アクターネットワークにおける SNNモジュールは，三
層の全結合 SNNで構成される．各層ではまず，入力ス
パイク列 X l[t] を重み行列 W l とバイアス bl による線
形変換で特徴空間に射影し，以下のように入力電流と
して表現する

I l[t] = W l X l[t] + bl． (1)

続いて，Leaky Integrate-and-Fire（LIF）モデルに基
づき，時刻 t における膜電位を以下のように定義する

U l[t] = β U l[t− 1] + I l[t]− Uthr S
l[t− 1]. (2)

ここで，U l[t] は時刻 t の膜電位，β は膜電位の減衰
率，Uthr は発火閾値，Sl[t− 1]は前時刻の発火スパイ



Fig. 1: 提案手法におけるスパイキングアクターネットワークの全体構成図

クである．膜電位が閾値を超えた場合，スパイクを発
火し，膜電位をリセットする．この一連の処理を各層
で繰り返すことで，SNN モジュールは動的な内部状態
を保持しながら時系列に応じたスパイク列を生成する．
また，各ステップにおける全層の膜電位は内部状態と
してリプレイバッファに保持される．これにより、タ
イムステップが 1であるネットワーク構造を持ちなが
らも，時間的に連続した観測に対する応答の履歴が記
録され，時系列情報を活かした行動決定が可能となる．
デコーダモジュールでは SNNモジュールから得られる
スパイク列を発火率に基づいて集約し，得られた信号
に重み付き線形変換と非線形活性化を適用し，連続値
の制御信号を得る．
2.2 優先度つき経験再生を用いたリプレイバッファ
従来のDRL手法では，オフポリシー学習を可能にす
るために，遷移を (s, a, r, s′, d)というタプルとしてリ
プレイバッファに格納する．本研究では，これを拡張
し，SNNの内部状態である膜電位 mを，行動生成前
後の両方で保存するために，(s, a, r,m, s′,m′, d) とい
う形のタプルを格納する．この拡張により，SNNが保
持する時間的情報を活用し，より正確な TDターゲッ
トの算出を可能にする．
さらにリプレイバッファの有効性を高めるため，本手
法では Loss Adjusted Prioritized (LAP) [10]を導入す
る．LAPでは，各遷移 iの優先度を絶対 TD誤差 δ(i)
に基づいて以下のように計算する

p(i) = max
(
|δ(i)|α, 1

)． (3)

ここで，α ∈ (0, 1]は優先度が学習に与える影響を制御
するハイパーパラメータであり，今回の実験では 0.4と
した．また，リプレイバッファから遷移 iをサンプリ
ングする確率は，次の式で与えられる

P (i) =
p(i)∑

j∈B p(j)
． (4)

ただし，B はリプレイバッファ内のすべての遷移の集
合を表す．この優先度付けにより，より大きな TD誤
差を持つ学習に効果的な遷移がより頻繁にサンプリン
グされるようになる．

2.3 Burn-inの適用
SNNを用いたDRLでは，リプレイバッファに蓄積さ
れた膜電位がネットワークパラメータの更新に伴って陳
腐化するという問題が生じる．この問題に対処するた
め，本研究では，R2D2 [9]に着想を得たBurn-inを提案
する．R2D2では，Distributed Prioritized Experience
Replay [11]にLong Short-Term Memory (LSTM) [12]
を統合し，リプレイバッファから取り出した連続する
経験の冒頭数ステップを慣らし運転として LSTMに入
力することで，その保存された内部状態を現在のネッ
トワークパラメータに適合させた．
本手法では，リプレイバッファから取り出した膜電
位を再度スパイキングアクターネットワークに入力し，
SNNの内部状態（膜電位）を現在のネットワークパラ
メータに合わせて更新する．ここで，Burn-inの有無
による TDターゲット計算の流れを Fig.2に示す．な
お，本図は概略であり，ターゲットネットワークの数
など一部実装とは異なる点がある．再計算された膜電
位m′

t+1 は，次式のように得られる
m′

t+1 ← π(st,mt | θnow) . (5)

ここで，現在のスパイキングアクターネットワークの
パラメータを θnow とする．この Burn-in により，常
に最新のスパイキングアクターネットワークによって
得られる内部状態に近い情報が学習に利用されるため，
TDターゲットの精度向上と学習の安定性改善が期待
できる．
2.4 膜電位の量子化
先行研究に対して，最適なポリシーを得るまでの学
習時間が長くなる原因の一つとして，膜電位の取りう
る値が連続かつ広範であるために探索範囲が大きくな
るという点が挙げられる．そこで本研究では，探索範
囲を適度に縮小しつつ性能を維持するために，スパイ
キングアクターネットワークの順伝搬・逆伝搬中では
なく，リプレイバッファへ保存する前の膜電位にのみ
量子化処理を適用する．行動の演算後に得られる膜電
位 m をリプレイバッファへ保存する直前に，以下の式
を用いて量子化を行う

m̂i = round
(
mclip,i/∆i

)
∆i. (6)



Fig. 2: 一般的な TDターゲット計算 (左)と Burn-inを導入した場合 (右)の概略図．

ここで，mclip,i は

mclip,i =


−2σ, mi < −2σ,
mi, −2σ ≤ mi ≤ 2σ,

2σ, mi > 2σ.

， (7)

であり，∆i は，

∆i =

{
1.0, |mclip,i| ≤ σ,

2.0, |mclip,i| > σ,
， (8)

である．また，今回の実験では，σ = 4.0 とした．こう
して得られた量子化膜電位 m̂ をリプレイバッファに保
存し，学習時には m̂ を用いることで，探索範囲を縮小
しつつ性能劣化を抑制することを目指す．
3 結果および考察
3.1 実験内容
実験評価には，MuJoCo連続値制御ベンチマークタ
スク（Ant-v4, Walker2d-v4, Hopper-v4, HalfCheetah-
v4）を使用する．実験は，各手法につき独立した 10試
行を実施する．各試行は 100エポックからなり，1エ
ポックは 1 万ステップの学習と 10 回のテストから構
成され，これらのテストにおける平均報酬を記録する．
Burn-inは学習時のみ適用し，テスト時には使用しない．
本研究では二つの実験を通じて，Burn-inおよび膜
電位の量子化の効果を評価する．実験 1では，先行研
究手法（PopSAN (TD3)）と，Burn-inのみを適用し
た提案手法を比較した．実験 2では，Burn-inを適用
した提案手法において，膜電位の量子化の有無による
性能を比較した．
実装には PyTorch [13]および snnTorch [14]を用い
た．スパイキングアクターネットワークおよびクリティッ
クネットワークは，ともに隠れ層が 256ノードで構成
され，学習には Adam [15]を用いた．学習率はそれぞ
れ 2× 10−5，5× 10−4とした．スパイキングアクター
ネットワーク内の SNNでは LIFニューロンを用い，膜
電位の減衰率を一様分布 U(0.1, 0.3)に基づいて設定し
た．また，リプレイバッファサイズは 105 である．
3.2 実験結果
Table 1に，各手法における平均最大報酬を示す．ま
た，平均報酬の推移をFig.3およびFig.4に示す．Fig.3
から，学習後期において，提案手法が先行研究を上回る
結果を得られたことが分かる．また，Fig.4から，Burn-
inに加えて膜電位の量子化を併用すると，特にHopper-
v4において，報酬の収束までに要するステップ数が短
縮される結果を得られたことが分かる．

3.3 考察
本研究の結果から，保存された膜電位を現在のスパ
イキングアクターネットワークのパラメータで再計算
することで，リプレイバッファ利用時に生じやすい膜
電位の陳腐化が緩和され，行動価値推定誤差が減少し，
学習後期においても比較的安定した収束挙動が得られ
たと考えられる．
膜電位の量子化を Burn-in と併用することで，

Hopper-v4においては，報酬の収束までに要するステッ
プ数が改善された．量子化によりリプレイバッファに
格納される膜電位の離散化が進み，探索範囲が適度に
縮小された結果，リプレイバッファから取り出した膜
電位を利用する際の計算コストを抑制しつつ，最終的
な学習性能への影響を最小限に保てたと考えられる．
一方で，Ant-v4，Walker2d-v4，HalfCheetah-v4で
は，膜電位の量子化による報酬の収束までに要するス
テップ数に目立った改善は認められなかった．観測次
元数の多いタスクでは，膜電位の量子化による探索範
囲の縮小が状態表現全体にほとんど影響を与えず，学
習初期の探索効率改善が十分に確認できなかったと考
えられる．
4 結論
本研究では，TD3アルゴリズムにおけるアクターネッ
トワークを SNNで実装し，リプレイバッファを拡張し
て膜電位を格納・再利用できる仕組みを提案した．さら
に，R2D2に着想を得た Burn-inを導入し，保存され
た膜電位の陳腐化を抑制するとともに，リプレイバッ
ファ保存前の膜電位に量子化を適用することで，探索
範囲を適度に制限し，学習効率の向上を目指した．
MuJoCo 連続値制御ベンチマークタスク（Ant-v4,

Walker2d-v4, Hopper-v4, HalfCheetah-v4）を対象と
した比較実験の結果，提案手法は既存手法（PopSAN
(TD3)）を上回る性能と学習の安定性を示し，平均最
大報酬および学習の安定性の両面で一定の改善が得ら
れた．
一方，Burn-inおよび量子化の適用には追加の計算コ
ストが伴うため，学習全体のステップ数や実行時間が
増加するという課題が残されている．今後は Burn-in
の再計算ステップ数の最適化や量子化粒度の動的制御
を検討し，計算コストと学習性能のさらなる両立を目
指していく．また，実機のロボットを用いた評価も実
施し，消費電力などの実環境下での制御性能を検証し
ていく予定である．
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オオミズナギドリの生態調査のための動画に基づく
群れのサイズと飛行速度の推定
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Estimating Flock Size and Flight Speed based on Ecological Research Video
of Streaked Shearwaters

∗A. Yazu, S. Ideue, S. Tanaka and T. Hatanaka (The University of Fukuchiyama),
A. Hondo (Kyoto Prefectural Nishimaizuru Senior High School)

Abstract– In this study, we propose a detection system for monitoring flocks of Streaked Shearwaters
around Kanmuri Island in Maizuru City. We examine two different approaches for analyzing video data
collected by the Kanmuri Island Ecological Survey Group. The first approach utilizes a deep learning-based
method, employing the well-known YOLO framework for target object detection and tracking. The second
approach is based on background subtraction between consecutive frames to identify flying objects in the
scene. Additionally, we estimate the flying speed of the detected objects to infer the size and movement
characteristics of the flocks. The estimated speeds are consistent with the known flight speed of Streaked
Shearwaters, supporting the validity of the proposed method.

Key Words: Streaked Shearwater, object detection, target tracking, flock size estimation, flight speed
estimation.

1 はじめに
京都府舞鶴市の若狭湾内に位置する冠島は，西日本
最大のオオミズナギドリ繁殖地として知られ，国の天
然記念物に指定されている．オオミズナギドリは全長
約 50cmほどの海鳥であり，1965年には京都府の鳥に
指定されている．太平洋やインド洋を生活の場として
おり，日本には繁殖のために飛来する．主に離島に営
巣し島の周辺の広い範囲の海域で餌を採取することか
ら，海洋生態系における高次捕食者に位置付けられて
いる．このため，海洋生態系の健全性を評価する指標
としても注目されている．このような背景からオオミ
ズナギドリの生態に関する研究は国際的にも進められ
ており，日本でもいくつかの飛来地における生態調査
が実施されている．また，オオミズナギドリは繁殖開
始年齢が遅く，1年に 1つの卵しか産まないという特
徴を持つ．このため，生息数が減少するとその回復が
困難である．全国的に準絶滅危惧種に指定されており，
本稿で対象にしている冠島が所在する京都府では、府
の改訂版レッドリスト 2021に掲載され要注目種に指定
されている 1)．今後も適切な繁殖環境を維持していく
ために，生態学的な基礎情報の収集が不可欠とされて
いる．さらに，冠島のオオミズナギドリは，沖合で餌を
探し繁殖地に戻るときに島の周りを旋回する「鳥まわ
り」と呼ばれる行動をする．この行動の解析も個体の
移動パターンなど生態研究において重要な意味を持つ．
我々は，このような調査の一環として，京都府立西舞
鶴高等学校理数探究科が実施している「オオミズナギド
リ調査を通した地域協働型探究学習と普及啓発活動 2)」
との協働を進め，調査隊が撮影した「鳥まわり」の映像
を用いて，YOLOを活用したオオミズナギドリの検出
と追跡，速度推定を行った．また，いわゆる深層学習を
用いる計算負荷が高い手法ではなくエッジで撮影した
動画が処理できることを目標に，負荷が小さい処理と

して背景差分法に基づくオオミズナギドリの検出と追
跡，速度推定に取り組んでいる．本稿では，これらの
2つの手法による結果を紹介する．2章では YOLOv8
を用いた検出と追跡について紹介し，追跡結果からの
移動速度の推定結果を示す．また，3章では背景差分法
に基づく検出を行い，画像上での移動速度から実空間
における移動速度の推定を行った結果を紹介し，4章
でまとめと今後の展望を述べる．
2 YOLOを用いた物体検出・追跡
2.1 YOLOの概要
YOLO(You Only Look Once) 3) は画像に映ってい
る物体を検出し，認識するための深層学習に基づくア
ルゴリズムである．このような画像から対象の物体を
検出し認識する手法は古くから研究されている．基本
的な方法論は，検出対象の物体のテンプレートを用意
し，対象とする画像の局所領域とテンプレートのパター
ンマッチングにより適合度を求め，対象の存在を把握
するというものである．したがって，従来の検出法は
対象の画像の調べたい領域のサイズに応じた検出窓を
スライドさせる仕組みを必要としていた．これに対し
て，YOLOは，検出窓をスライドさせる仕組みを用い
ることなく画像を 1回，畳み込みニューラルネットワー
ク（CNN）へ通すことでオブジェクトの検出と認識が
可能である．多くの層をもつニューラルネットワーク
に，検出窓の大きさを変更しつつ画像上をスライドさ
せる処理とパターンマッチングのための畳み込み計算
が埋め込まれており，ネットワークを構成する素子と
結合重みに多数のテンプレートに相当する情報が埋め
込まれていることになる．学習済のネットワークには
多くの検出対象の情報が埋め込まれているが，新しい
対象物体に対しては，追加学習を行うことで対応がで
きる．ひとたび学習したネットワークは，対象の物体
の検出のための処理が比較的高速で，入力動画像から



一度で複数の物体の検出が可能である．また，検出し
た物体についてバウンディングボックス，クラス名，信
頼度を出力する機能を有する．鳥類への適用について
の先行研究 4, 5)では，特定の種（カワウ）に対する検
出や，ビオトープへ飛来する鳥類の検出と飛行軌跡の
認識に利用されている．本研究では，冠島のオオミズ
ナギドリに固有の「鳥まわり」の様子を捉えた動画に
適用し，個体の検出と追跡を行う．撮影するカメラは，
陸地（島の内部）に設置され，遠方を飛行する群れの
様子を撮影している．視野内に対象の個体が存在する
時間が比較的短く，一定の方向への群れ行動である．
YOLOによる物体検出の仕組みのイメージを Fig. 1
に示す ?)．

Fig. 1: YOLOの仕組み．技術紹介サイト 6) より引用
まず，Fig.1の左側に示されている処理では，物体を
検出したい画像を正方形にリサイズした後，細かい正
方形グリッドに分ける．次に，中央に示す処理では，各
グリッドセルにおいて検出された物体の中心位置と高
さ，幅を推定してバウンディングボックスで囲む．ま
た，線の太さは信頼度を表し，太ければ太いほど高い信
頼度を持つことを表している．中央下の処理では，各
グリッドセルで検出された物体のクラスごとに色分け
して分類している．これらの「物体の位置検出」と「物
体のクラス分類」の処理を組み合わせることで，最終
的な検出結果が出力されている．
本研究では，物体検出において YOLOv8 を使用し
た．YOLOv8は，2023年に Ultralytics社が公開した
YOLO のバージョンである．YOLOv8 は，最先端の
バックボーンとネックアーキテクチャを採用し，特徴
抽出と物体検出の性能を向上させている．また，精度
と推論速度のバランスが最適化されているとされ，リ
アルタイム物体検出を必要とする多様な応用分野で高
い有用性をもつとされている．さらに，YOLOv8は複
数の事前学習済みモデルを提供し，用途や性能要件に応
じた柔軟なモデル選択が可能である．なお，本研究で
用いた YOLOv8は 2023年に発表されているが，2025
年 6月現在はバージョン 12が発表されている．
YOLOv8では，検出されるクラス名に開発者が収集し
た事前学習済みのデータセット (COCOデータセット)
を利用することができる．COCO(Common Objects in
COntext)データセットは，物体認識やセグメンテーショ
ン，キャプション生成などのタスクに広く用いられる大
規模な画像データセットである．COCOデータセット
には 33万枚の画像が収録されており，20万枚の画像に
は物体検出，セグメンテーション，キャプションのタス
クのためのアノテーションが付けられている．COCO

Table 1: COCOデータセットの一部
ID ラベル
0 人 (person)
1 自転車 (bicycle)
2 自動車 (car)
3 オートバイ (motorcycle)
4 飛行機 (airplane)
5 バス (bus)
6 列車 (train)
7 トラック (track)
8 ボート (boat)
9 信号機 (traffic light)
10 消火栓 (fire hydrant)
11 停止標識 (stop sign)
12 駐車メーター (parking meter)
13 ベンチ (bench)
14 鳥 (bird)
15 猫 (cat)
16 犬 (dog)

データセットの一部をTable 1に示す．人や自転車，車
などの 80種類のデータセットが学習されている．
ここでは，PyTorchを用いてモデルを実装し，学習回
数 100回で学習を行った．評価指標として平均適合率
（mAP）を用い，検出性能を評価した．この YOLOv8
を Anaconda Promptの仮想環境上で pipを使用しイ
ンストールした後に実装し，物体検出を実施した．出
力された結果を Fig. 2に示す．Fig. 2を見ると，奥
の岩は boat(ボート)，鳥は people(人)と認識されてい
る．また，検出されていない鳥が多い．既存のデータ
セットと学習モデルでは物体が認識されないため，独
自の学習データセットを作成した．

Fig. 2: 出力結果

2.2 独自の学習データ
YOLOv8には，演算負荷と精度の異なる 5つの学習
済み重みモデルがあり，「n，s，m，l，x」の 5つが存
在する．しかし，YOLOv8にGitで用意されているこ
れらの学習モデルでは，動画内の物体が綺麗に検出さ
れなかったため，LabelImgを利用して独自にラベルと
学習データを作成した．
学習用に用意した画像 500枚に対してアノテーショ
ンを行い，bird（鳥）と rock（画像上真ん中の岩）の
2つのラベルを作成した．ここでは，ラベリングされ
たバウンディングボックスの座標がテキストファイル
で保存されている．学習には，YOLOv8のモデルの中
で精度と速度のバランスが取れたYOLOv8mを使用し
た．また，学習回数は 300回と設定した．学習されて



Fig. 3: 画像の出力結果

Fig. 4: 動画の出力結果の一部
できた独自のデータセットを使用して最初と同じ動画
と画像の物体検出を行った．
このとき得られた物体検出結果の一例を Fig. 3, 4に
示す．Fig. 3を見ると，学習データとして設定したラ
ベル通りにクラス分けが行われ，正確に検出されてい
るのがわかる．しかし，Fig. 4の結果では，飛行して
いる鳥の検出結果にばらつきがみられる．この理由と
して，信頼度と閾値が適切ではないということが挙げ
られる．そこで，信頼度と閾値を変更し，検出結果に
ばらつきが生じなくなるように試行錯誤して調整した．
信頼度とは，[0, 1] の範囲の実数で表され，画像上の
バウンディングボックスで囲まれた部分が「背景」か
「物体」かを与える数値のことである．信頼度が 0に近
いほど，バウンディングボックスの中身は「背景」であ
る可能性が高く，信頼度が 1に近いほど，バウンディ
ングボックスの中身は検出対象の「物体」を表してい
るということになる．なお，YOLOv8が提供している
デフォルト値は 0.5である．検出結果の精度を上げる
ために，0.6，0,65，0.7などと変更することによって，
この値以上の値の信頼度を持ったバウンディングボッ
クスだけを出力するようにする必要がある．
また，NMS (Non-Maximum suppression)閾値を利
用し，各クラスごとに，一番信頼度の高い枠を選び，そ
の枠と他の枠の重なり具合 (IoU)を調べて一定以上の
割合で重なっている枠を削除していく．IoU閾値とは，
基準の枠とその他の枠の重なり具合（割合）を表す数
字のことで，信頼度と同様に [0, 1] の範囲の実数で示さ
れる．IoU閾値が 0に近いほど，2つの枠は「重なって
いない」を意味し， IoU閾値が 1に近いほど，バウン
ディングボックスの中身は「重なっている」を意味す
る．IoUのデフォルト値は 0.45で，重複を減らすには
この値を上げる必要がある．信頼度と同じように，IoU
も 0.5，0.6，0.65と値を変更して出力させた．
信頼度と閾値を変更した出力結果の一例を Fig.5に

Fig. 5: 信頼度:0.7,閾値:0.65

Fig. 6: 信頼度:0.6,閾値:0.5

示す．Fig. 5は，信頼度 0.7，閾値 0.65とどちらも高
い値を適用して出力させた結果の画像である．どちら
の数値も高くしすぎるとバウンディングボックスが検
出されなくなった．このように，独自の学習データを
用いて画像を出力する際，信頼度や閾値を任意の値に
設定し，10回の検証を行った．この結果，Fig. 6に示
す信頼度 0.6，閾値 0.5の設定のときに満足できる正確
さをもつバウンディングボックスが出力できることが
確認された。
追加した対象物体を表す bird も rock もバウンディ
ングボックスが重複することなく，1つのバウンディ
ングボックスとして適切に検出できた．しかし，左側
の鳥のうち一羽が認識されていない．これは，信頼度
が低いために背景として認識された可能性や，閾値の
影響で両端の物体のバウンディングボックスと重なら
ず検出されなかった可能性が考えられる．
今後の課題として，信頼度と閾値を調整し，未検出
の鳥がどの条件で認識されるかを確認する必要がある．
また，未検出の原因が物体の特徴や環境要因（背景との
コントラスト，波の反射などによる光の影響など）に
よるものかを分析し，適切なパラメータ設定やデータ
の追加が有効かを検討する必要がある．
2.3 追跡
本研究では，YOLOv8 にトラッキング機能を統合す
ることで，単なるフレームごとの物体検出にとどまら
ず，時間的連続性を考慮した物体追跡を実現するリア
ルタイム検出追跡システムを構築した．本システムで
は，YOLOv8 によって各フレームで検出された物体に
対し，SORT（Simple Online and Realtime Tracking）
や Deep SORT（Deep Simple Online and Realtime
Tracking），あるいは ByteTrack などのオンラインマ
ルチオブジェクトトラッキングアルゴリズムを組み合
わせることで，各物体に一意の ID を付与し，連続し
たフレーム間で同一物体を追跡する．



2.4 MOT(Multiple Object Tracking)フォーマ
ット

MOTフォーマットは，物体追跡タスクにおけるデー
タの標準的な形式で，このフォーマットは，物体が動画
や画像のシーケンス内でどのように動いているか，追
跡される過程を表現する．MOTフォーマットは，各フ
レームごとに物体の位置や識別情報を記録する形式で，
通常，以下のようなカンマ区切りのテキストファイル
形式で保存される．今回は，フレーム番号，オブジェ
クト ID，バウンディング左上の x座標，バウンディン
グボックス左上 y座標，バウンディングボッスの幅，バ
ウンディングボックスの高さ，信頼度がカンマ区切り
で出力されている．後半の 2つは，フォーマット上で
無視する値である．MOTフォーマットを利用して出
力されたテキストファイルの一部を Table 2に示す．

Table 2: オブジェクトの移動速度データ
F ID X Y W H Label Score
1 1 912.86 454.41 223.26 133.68 rock 0.90
1 2 1325.18 717.48 64.51 45.10 bird 0.73
1 3 1439.16 793.20 58.34 23.22 bird 0.68
1 4 1166.85 713.80 54.63 26.70 bird 0.68
1 5 852.07 745.11 95.28 32.05 bird 0.59
1 6 1676.83 733.55 53.34 52.20 bird 0.44
2 1 913.52 454.59 223.87 133.43 rock 0.90
2 2 1305.05 716.21 60.40 39.72 bird 0.66
2 4 1147.78 710.87 50.89 27.29 bird 0.69
2 5 857.40 746.25 67.26 27.82 bird 0.48
2 6 1655.16 734.11 53.31 55.80 bird 0.69
3 1 914.27 455.49 223.79 132.84 rock 0.90
3 2 1281.81 713.65 59.66 35.09 bird 0.69
3 4 1126.87 708.79 49.66 27.60 bird 0.68
3 6 1634.57 732.44 57.77 59.01 bird 0.77
4 1 914.36 456.46 223.04 132.69 rock 0.90
4 2 1256.75 710.51 54.86 31.29 bird 0.72
4 4 1102.45 706.44 51.05 29.78 bird 0.71
4 6 1610.08 731.47 63.33 58.19 bird 0.75
5 1 914.84 456.51 222.66 132.53 rock 0.89
5 2 1227.56 707.01 55.88 32.10 bird 0.74
5 4 1076.38 703.07 55.72 34.66 bird 0.75
5 6 1588.30 731.29 62.69 52.54 bird 0.72
6 1 914.67 456.52 222.51 132.44 rock 0.89
6 2 1200.29 702.50 55.91 34.79 bird 0.74
6 4 1052.35 699.51 56.70 40.24 bird 0.74
6 6 1560.92 730.31 64.64 41.37 bird 0.71
6 22 737.76 743.04 86.09 26.27 bird 0.53
7 1 913.48 456.13 223.77 132.41 rock 0.90
7 2 1172.61 700.32 57.00 35.64 bird 0.72

これによって出力された物体のデータを基に各フレー
ム間での物体の移動速度を計算した．まず，各フレー
ム間のバウンディングボックスの中心座標の変化量を
求め，その変化量と各フレーム間の時間差を使用して
移動距離と移動速度を計算している．単位は，pixel/s，
m/s，km/h の 3 パターン出力されるようになってい
る．このテキストファイルでは，オブジェクト ID，信
頼度，物体が検出されたフレーム ID，画面上での移動
速度 (pixels/s)，推定速度 (m/s,km/h)が出力される．
オオミズナギドリはおおよそ時速 30kmで飛行すると
されている．この追跡法で出力されたテキストファイ
ルの結果からは，時速 40～50kmとなっており，差は
あるが，速度推定の結果は安定した値を得ていること
がわかる．速度推定を行い，テキストファイルにまと
めたものの一部を Table 3に示す．
最後に，MOTフォーマットで出力されたテキスト
ファイルからバウンディングボックスの中心座標を計算
し，各オブジェクト IDの位置変化をグラフで可視化し
た．x軸は， ”Frame Number” でフレーム番号を設定
し時間の経過を示している．y軸は”Position (Pixels)”
で中心座標をピクセル単位 (物体の位置座標)で表示し
ている．位置変化のグラフを Fig. 7に示す．
Fig. 7の軌跡の傾きがオオミズナギドリの飛行速度

Table 3: オブジェクトの推定移動速度
Obj ID Class Frame Center (X, Y) px/s km/h

1 rock 2 (1025.45, 521.30) 57.48 1.94
2 bird 2 (1335.25, 736.07) 1340.20 45.23
4 bird 2 (1173.22, 724.51) 1255.12 42.36
5 bird 2 (891.03, 760.16) 519.45 17.53
6 bird 2 (1681.82, 762.01) 1297.22 43.78
1 rock 3 (1026.16, 521.91) 55.47 1.87
2 bird 3 (1311.64, 731.19) 1433.71 48.39
4 bird 3 (1151.70, 722.59) 1285.20 43.38
6 bird 3 (1663.45, 761.95) 1091.88 36.85
1 rock 4 (1025.88, 522.80) 55.86 1.89
2 bird 4 (1284.18, 726.15) 1660.32 56.04
4 bird 4 (1127.98, 721.33) 1412.91 47.69
6 bird 4 (1641.74, 760.57) 1293.70 43.66
1 rock 5 (1026.17, 522.77) 17.34 0.59
2 bird 5 (1255.50, 723.06) 1715.50 57.90
4 bird 5 (1104.24, 720.40) 1412.60 47.68
6 bird 5 (1619.64, 757.56) 1326.38 44.77
1 rock 6 (1025.92, 522.74) 14.72 0.50
2 bird 6 (1228.24, 719.89) 1631.75 55.07

Fig. 7: 各オブジェクトの位置関係
に対応している．y 軸の値がほぼ一定の緑で示した軌
跡は画像上で動いていないものに対応し，背景に移る
岩である．Fig.7 を見ると，ある区間では鳥の位置が
連続して検出され，直線的な動きが確認できる．一方
で，点がまばらになっている部分もあり，これは検出
や追跡が一時的に途切れてしまったためだと考えられ
る．より安定した検出を行うには，検出精度の向上に
加えて，追跡アルゴリズムの強化も重要である．特に，
IDが正しく継続して付与されるような工夫が必要であ
ると考える．
3 背景差分による追跡
2章では，深層学習に基づくYOLO v8 を用いた検出
について述べた．この方法は，撮影条件に応じたセッ
ティングも必要になるため，計算資源が期待できない
冠島1における現地調査の際に活用することは期待でき
ない．そこで，固定カメラによる撮影であることおよ
び冠島を周回する「鳥まわり」を撮影していることを前
提に，その動画に写っている移動物体を検出すること
に特化した背景差分法を用いたオオミズナギドリの検
出，追跡および飛行速度の推定について検証を行った．
3.1 差分画像
差分画像とは，動画における近接する画像間の差分
をとることで得られる．同一の背景をもつ 2枚の画像
の差分を求めると，同じピクセル座標における画素の
色や明るさの差があった場合にその部分だけが残り，画
像上に表示される．動画におけるフレームごとの差を
求めることによって，画角上で移動した物体を抽出す
ることが可能になる．ここでは，動画中の動体（鳥）の
出現位置を可視化するために，OpenCVの背景差分ア

1冠島は無人島でありワークステーション級の計算機を使うこと
ができない環境である．



ルゴリズムであるMOG2（Mixture of Gaussians）を
用いた前景抽出処理を実施した．オオミズナギドリが
「鳥まわり」を行っている動画から一定間隔（任意のフ
レーム数ごと）でフレームを抽出し，それぞれのフレー
ムに対して背景差分を適用する．差分画像を 2値化し，
動きのある部分だけを白く表示した画像を保存した．
処理結果の一例として，3フレーム，10フレームごと
の背景差分処理結果を Fig.8，Fig.9に示す．検出され
たオオミズナギドリの飛行軌跡が白の領域で示されて
いる．

Fig. 8: 3フレームごと

Fig. 9: 10フレームごと
このように，鳥が飛行しているときの軌道や，翼の
動きがわかりやすく表示されているのがわかる．しか
し，どのようなスピードで動いているかなど鳥の速度
や動画内に写る鳥の数などの情報は，このままでは分
からない．
3.2 差分画像による鳥の追跡
差分画像を用いて，動画内における鳥が 1フレーム
に動くピクセル距離や 1秒間に動く距離を計算し出力
することに取り組んだ．鳥の動画内における速度を求
めるため，背景差分で出力されたオオミズナギドリの
領域を楕円で近似し，その中心点を求めて，楕円の中
心点間の距離（ピクセル距離）を測ることとした．こ
れは，はばたきの影響で検出されるオオミズナギドリ
の領域のサイズが変化するため，その領域を近似する
楕円の中心を採用することで，ロバストな移動量の計
算ができることを期待したものである．楕円の中心点
が 1フレームごとに移動するピクセル数を計算し，動
画のフレームレートに基づいてオオミズナギドリの動
画内における移動速度（pixel/s）を計算した．楕円で
オオミズナギドリが検出された領域を近似した結果を
Fig. 10に示す．

Fig. 10: 処理結果
Fig. 10では，元フレームとその 3フレーム後の差分
から得たオオミズナギドリの存在領域の楕円を，元の
画像に重ねた画像である．実際の処理は，2値化した画
像データのもとで処理されていることに注意されたい．
なお，Fig. 10 においてオオミズナギドリがいない部分
にも楕円が存在するのは，元フレームから 3フレーム
後のフレームとの差分を表示しているためである．
次に，差分対象の楕円による近似とフレーム内にお
ける鳥の速度を利用して，動画内に写る鳥の数と鳥が実
際に移動しているおおよその速度を計算して出力した．
次に，動画全体で検出されたオオミズナギドリの個
体数をカウントする方法を示す．撮影対象は，群れを
なして「鳥まわり」と呼ばれる島を周回する行動であ
るため，動画では画面の右から左へほぼ一定の速度で
飛行していることを前提とできる．そこで，最初のフ
レームに写る鳥の数をまずカウントし，2フレーム以
降は，画面の右からある範囲のみの検出区間を設定し，
そこに現れたオオミズナギドリのみをカウントすれば
よい．検出区間をフレームあたりの移動量をもとに決
定することができるため，仮に撮影条件が異なっても，
当初の複数のフレームから速度を求め，検出範囲を決
定することができる．すなわち，フレーム間差分と画
像の右側の狭い領域における対象の検出のみで，動画
全体に移る個体数の推定が可能である．Fig. 10に示し
た動画の場合は，2フレーム以降は横方向のピクセル数
で，1620から 1678の間の 59ピクセル間の領域に注目
し，この範囲の楕円の中心の個数を調べることで，飛
行するオオミズナギドリの個体数がカウントできる．
また，オオミズナギドリの飛行速度は約 30km/hで
あるということから，この動画上の平均的な移動速度
を 30km/h と仮定して，フレーム差分から求めた画像
上の移動速度 (pixel/s）を換算し飛行速度とした2．得
られたフレーム間の速度推定と，動画内の鳥の数をカ
ウントした結果を Table 4に示す．
Table 4は検出した個体の速度情報の一例であるが，
すべての検出されたオオミズナギドリの速度情報から，
2フレーム以降にカウントすべき領域を横方向で 1620
ピクセルから 1678ピクセルの矩形領域に制限し，個体
数をカウントする実験を行ったところ，最初のフレー
ムに 7羽，第 2フレーム以降で 75羽の計 82羽であっ

2撮影場所から群れが飛行している領域までの距離情報が得られ
ていなかったため，pixel/s から実空間における速度への幾何学的な
換算は行っていない．飛行領域の奥行きもあるため，すべての個体
がほぼ一定とみなせる速度で移動していたとしても，画像上の速度
はある範囲に分布する．こういった点も踏まえると画像からの速度
の推定には 2 章の結果も含めて，さらなる検討が必要である



Table 4: オブジェクト間の速度情報
From ID To ID Speed (px/s) Speed (km/h)

1 3 2045.26 29.87
1 9 1984.81 29.27
4 5 2046.51 29.89
5 8 2176.06 31.18
6 7 2064.10 30.06
6 10 2290.00 32.32
8 10 2107.25 30.49
9 11 1749.96 26.92

た．実際に目視でコマ送りしながらカウントした結果
は 80羽であったので，この方法で実用上問題ない精度
で個体数を調べることができると考えられる．

4 まとめ
YOLOv8を用いた物体検出では，信頼度と閾値を変
更することで比較的正確に 1つのバウンディングボッ
クスで検出することができた．また，物体追跡のため
に YOLOv8に tracking機能を追加し，オオミズナギ
ドリの ID検出とフレーム間の物体を識別し，物体の速
度の推定を行った．さらに，MOTフォーマットを出力
することで，フレーム IDやクラス名，バウンディング
ボックスの情報を基に，対象のオオミズナギドリが飛
んでいる動画の各フレーム間の対象の移動距離と，撮
影場所や島と対象物の距離間などから，誤差はあるが
鳥の速度を測定することができた．最後に各オブジェ
クトの位置関係を可視化することで，フレームが進む
ごとにオブジェクト IDがほぼ一定速度で同じ方向への
移動をしていることが容易に確認できる出力を得た．
差分画像に基づいてオオミズナギドリのフレーム間
の移動距離を算出し，画像上における鳥の速度に基づ
いて，画像内で個体数をカウントする領域を制限でき
ることを示した．背景差分による個体の検出と，初期
データに基づいて個体数をカウントする領域を制限す
る手法は，小型の省電力型の計算機での実用に適して
いる．冠島は無人島であるが，携帯電話回線は利用で
きる．したがって，ソーラー発電とバッテリーで安定
稼働できる程度の小型の計算機を用いた，動画の記録
から個体数のカウントまで行える計測システムが稼働
すると，計測結果をほぼリアルタイムで確認できるよ
うなシステム化が期待できる．今後，検出精度の改善
とともに動画の取得から処理結果の出力までの処理手
順の計算負荷の削減などを行い，現地で稼働するシス
テムを試作することを今後の課題としたい．
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四元数ニューラルネットワークによる
ロボットアームの逆運動学学習

○橋本尚典 礒川悌次郎 上浦尚武（兵庫県立大学）
On Learning Inverse Kinematics for Robotic Arms

with Quaternionic Neural Networks

∗T. Hashimoto, T. Isokawa and K. Naotake (University of Hyogo)

Abstract– This study examines whether Quaternionic Neural Networks (QNNs) are suitable for learning
inverse kinematics mappings from joint rotation inputs. Although QNNs are theoretically well-suited for
representing 3D rotations, their practical effectiveness in this context remains unclear. To investigate this,
we use a 6-DoF UR5e robotic arm and Jacobian data collected in MuJoCo to compare QNNs with standard
real-valued neural networks in approximating the Jacobian matrix. Experimental results did not show
significant performance improvements with QNNs. Nonetheless, this study provides empirical insights into
the limitations and challenges of using quaternion-based representations in rotation-related tasks in robotics
and contributes to a better understanding of model design for periodic input data.

Key Words: Neural Network, Inverse kinematics, Quaternion

1 はじめに
近年のAIモデルの成功は, 対象タスクに応じた構造
をモデル内部に適切に組み込むことに大きく依存して
いる. たとえば, 畳み込みニューラルネットワークは画
像認識に適した局所構造を持ち, Transformerは長い時
系列や自然言語処理に適した自己注意機構を備えるこ
とで, 高い性能と効率的な学習を実現している. 本研究
が着目するのは,「ロボットの関節角データを入力とす
るタスクにおいて, どのようなモデル構造が最も適して
いるか」という問いである. これは依然として明確な
解が得られていない課題である.

この問題設定の具体例として, 本研究では逆運動学
に着目する. 逆運動学とは, ロボットの手先を所望の位
置・姿勢に到達させるために必要な関節角度を求める
問題であり, ロボットアームの運動制御における基本か
つ重要な課題である. ロボット構造が複雑になるにつ
れて逆運動学の解析的解法は困難となり, 一般には数
値的な反復手法に依存することが多い. こうした数値
解法では, ロボットの運動学モデルから導出されるヤ
コビ行列を用いた最適化アルゴリズムが一般的に利用
される. ヤコビ行列を用いる手法は高い精度を実現す
る一方, その導出や実装は煩雑であり, MuJoCo 7) や
Pinocchio 1) などのソフトウェアにより計算支援が行
われている. しかし, これらのソフトウェアは実行環境
に制約があり, とくにエッジデバイスのような軽量な計
算環境には適さないという課題がある.

そこで本研究では, ヤコビ行列の計算をニューラル
ネットワーク (Neural Network; NN) により近似し, よ
り軽量かつ効率的に逆運動学を解く手法を検討する. ま
た, この枠組みの中で, 角度情報を入力とするタスクに
おいて, より適したネットワーク構造を探索すること
を目的とする. とくに, 回転のような周期的構造をもつ
データに対しては, その幾何学的性質を反映した適切な
表現が求められる. 従来の NN では, 回転を単なる実
数ベクトルとして扱うことが多く, その本質的な構造
が考慮されていない場合がある. こうした課題に対処

するために, 本研究では四元数ニューラルネットワーク
(Quaternionic Neural Network; QNN）5, 3) に着目す
る. QNN は, 四元数演算を NN の計算に組み込んだモ
デルであり, ロボット分野への応用例も報告されている
6, 2). 四元数は三次元空間の回転を表現する数学的枠組
みであり, ジンバルロックの回避や滑らかな補間が可能
であることから, ロボティクスにおいて広く利用されて
いる. 本研究では, 各関節の回転を四元数で表現し, そ
れを入力とする QNN を構築することで, 回転の構造
をより自然に捉え, ヤコビ行列の近似精度と汎化性能
の向上を図る. 数値実験では, 6自由度のロボットアー
ムである UR5e を対象とし, MuJoCo 上で取得したヤ
コビ行列データをもとに, 各関節の回転を四元数で表
現した入力と, 対応するヤコビ行列を出力とする QNN
を構築する. さらに, 同条件下で通常の実数値 NN と
比較し, 学習誤差の収束性および近似精度の観点からそ
の有効性を検証する.

2 逆運動学の数値解法
まず, ロボットアームにおける逆運動学の数値的解法
として, ヤコビ行列を用いた微分逆運動学に基づくアプ
ローチについて説明する. 勾配降下法は, 目的関数の勾
配に沿って変数を更新し, 関数の極小値を探索する最適
化手法である. この手法を逆運動学に適用することで,
目標とする手先の位置および姿勢に対応する関節角を,
逐次的に数値的に求めることが可能となる.

ここで, 手先の目標状態を表すベクトルを sgoal ∈ R6

とする. sgoal は, 手先の 3次元位置および 3次元姿勢
を表すベクトルである. 現在の関節角を qk ∈ Rn とし,
順運動学関数を ϕ : Rn → R6 と定義する. この関数
ϕ(qk) は, 関節角 qk に対してロボットの手先の位置と
姿勢を出力する. このとき, 手先の目標状態に関する残
差は次のように定義される：

e(qk) = sgoal − ϕ(qk) (1)

ヤコビ行列 J(qk) ∈ R6×n は次式で定義される：



J(qk) =
∂ϕ(q)

∂q

∣∣∣
q=qk

(2)

このとき, 関節角の更新則は次式で与えられる：

qk+1 = qk − αJ(qk)
Te(qk) (3)

ここで α > 0 は学習率である. この更新則により,
手先の目標位置・姿勢と現在の位置・姿勢の差を最小
化する方向に関節角を更新することで, 所望の手先状態
を実現する関節角を逐次的に求めることができる.

3 四元数ニューラルネットワーク
四元数ニューラルネットワーク (Quaternionic Neural

Network; QNN）5, 3) は, 入力・出力の各成分を四元数
として表現し, それに対する線形変換をハミルトン積に
基づいて定義するものである. まず, 四元数について説
明し, その後 QNN を構成する要素について説明する.

3.1 四元数
四元数は, 複素数を拡張した超複素数の一種であり,

1つの実数成分と 3つの虚数成分からなる 4次元の数体
系である. 四元数 x ∈ H は以下のように定義される：

x = x(r) + i x(i) + j x(j) + k x(k), (4)

ここで x(r), x(i), x(j), x(k) ∈ Rは各成分を表し, i, j, k
は以下の関係を満たす虚数単位である：

i2 = j2 = k2 = ijk = −1. (5)

また, i, j, k の間には次のような関係が成立する：

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j.

四元数の積 xy は以下のように計算される：
xy = (x(r)y(r) − x(i)y(i) − x(j)y(j) − x(k)y(k))

+ i (x(r)y(i) + x(i)y(r) + x(j)y(k) − x(k)y(j))

+ j (x(r)y(j) − x(i)y(k) + x(j)y(r) + x(k)y(i))

+ k (x(r)y(k) + x(i)y(j) − x(j)y(i) + x(k)y(r))

なお, 四元数の積は交換則を満たさない xy ̸= yx.
このような構造は, 3次元空間における回転の表現に
特に有用であり,ロボット工学,コンピュータグラフィッ
クス, ゲーム開発など, 幅広く活用されている.

3.2 線形層
N 次元の四元数ベクトル x を入力とし, M 次元の
四元数ベクトル y を出力とする, 四元数 NN の線形層
について説明する.
入出力の四元数ベクトル x ∈ HN ,y ∈ HM は, 4つ
の実数ベクトル x(·) ∈ RN , y(·) ∈ RM を要素にもつ：

x =
[
x(r) x(i) x(j) x(k)

]⊤
,

y =
[
y(r) y(i) y(j) y(k)

]⊤
. (6)

次に学習で調整する対象となる, 重み行列 W およ
びバイアスベクトル b も四元数で構成される.

Fig. 1: UR5e robot arm used in this study.

は, 各成分に対応する 4つの実数行列から構成され,
次のように表される：

W = W (r) + iW (i) + jW (j) + kW (k), (7)

W (r),W (i),W (j),W (k) ∈ Rnout×nin . (8)

バイアスベクトル b ∈ Hnout も同様に, 次のように
定義される：

b =
[
b(r) b(i) b(j) b(k)

]⊤
. (9)

このとき, 出力は以下のようにハミルトン積 ⊗ に基
づいて定義される線形変換として与えられる：

y = W ⊗ x+ b. (10)

ハミルトン積は四元数の非可換な積に対応するため,
これを効率的に実装するためには, 各成分ごとに展開さ
れた実数の行列演算形式に変換する必要がある. その
具体形は次のように与えられる：

y(r) = W (r)x(r) −W (i)x(i)

−W (j)x(j) −W (k)x(k) + b(r)

y(i) = W (i)x(r) +W (r)x(i)

+W (k)x(j) −W (j)x(k) + b(i)

y(j) = W (j)x(r) −W (k)x(i)

+W (r)x(j) +W (i)x(k) + b(j)

y(k) = W (k)x(r) +W (j)x(i)

−W (i)x(j) +W (r)x(k) + b(k). (11)

このように, 四元数 NN の線形層は複雑なハミルトン
積をあらかじめ実数の演算に展開することで, 通常の
深層学習ライブラリ上でレイヤとして定義するだけで,
誤差逆伝播に対応した学習をそのまま適用することが
できる.

4 数値実験
四元数ニューラルネットワーク（QNN）の有効性を
検証するため, 6自由度のロボットアームを対象に, 関
節角度からヤコビ行列を予測する回帰問題を設定し, 数
値実験をおこなう.



(a) Neural Network (NN)

(b) Quaternionic Neural Network (QNN)

Fig. 2: Model architectures used in the numerical experiments.

4.1 データ生成とタスク設定
学習および評価データは,物理シミュレータMuJoCo
上に構築した UR5e モデル（Fig. 1）を用いて収集し
た. 具体的には, 関節角度ベクトル q ∈ R6 に対し
て, MuJoCo の内蔵関数を用いて対応するヤコビ行列
J(q) ∈ R6×6 を数値的に計算し, その平坦化ベクトル
y ∈ R36 を教師信号として記録した. このようにして
得られた関節角とヤコビ行列の組を用いて, ニューラル
ネットワークによるヤコビ行列の近似性能を評価した.

4.2 モデル構成
本研究では比較対象として 2種類のニューラルネット
ワークアーキテクチャを構築した. Fig. 2 (a) はニュー
ラルネットワーク（NN）, Fig. 2 (b) は四元数ニューラ
ルネットワーク（QNN）の構造を示している. NNモデ
ルでは, 入力として与えられる関節回転データ x ∈ H6

をまず実数空間 R4×6 に展開し, これを平坦化して R24

のベクトルとする. その後, 実数値の全結合層により中
間表現 R4H を得て, ReLU 活性化関数を適用し, さら
に出力層を通じて最終的に y ∈ R36 を生成する. 一方,
QNNモデルでは, 入力 x ∈ H6 に対して四元数線形層
を適用し, 四元数空間 HH に変換する. その後, 得ら
れた出力を実数空間 R4H に変換・平坦化し, NNと同
様に ReLU および実数値の全結合層を経て最終出力を
得る. 両モデルとも, 最終的にヤコビ行列を平坦化した
36 次元の実数ベクトルとして出力する構成となってお
り, 損失関数には出力と教師信号との L2 ノルムを用い
て学習を行った.

4.3 入力エンコーディング
ロボットの関節状態は通常, 関節角として表現される
が, 本研究ではこれを四元数に変換してモデルに入力す
る. 具体的には,関節角ベクトル q = [q1, q2, . . . , q6]

⊤ ∈
R6 を, 各関節の回転軸 ai ∈ R3 まわりの回転とみな
し, 対応する四元数表現を以下の式により求める：

xi =

[
cos (qi/2)

ai sin (qi/2)

]
∈ H. (12)

この変換をすべての関節に適用することで, 四元数から
なる入力ベクトル x = [x1,x2, . . . ,x6] ∈ H6 を得る.

4.4 学習設定
実験では, 学習率 η ∈ {10−4, 10−5, 10−6} および隠
れ層のユニット数 H ∈ {100, 200, 500} を変化させ, 両
モデルの性能を比較した. 最適化手法には Adam 4) を
用いた. バッチサイズは 2048, 最大学習ステップ数は
106 とし, 各条件について異なる 10 通りの乱数シード
を用いて学習を実施した. 学習データは, 各ステップに

おいて 2048 個のデータサンプルを逐次生成し, オンラ
イン形式で学習に用いた.

4.5 結果と考察
Fig. 3に，各ハイパーパラメータ条件での検証損失の
推移を示す．行は学習率 η ∈ {10−4, 10−5, 10−6}，列
は隠れ層ユニット数 H ∈ {100, 200, 500} に対応して
いる．赤線は実数値ネットワーク（NN），青線は四元
数ネットワーク（QNN）の平均損失を表し，半透明の
帯はそれぞれの標準偏差である．学習率 η = 10−4（上
段）では，NNが QNNより速く損失を低下させる傾向
が顕著であり，特に H = 100, 200の条件では終盤まで
NN が一貫して低い損失を維持した．一方で H = 500
では両モデルの曲線がほぼ重なるまで収束し，モデル
容量が増えるにつれて差が縮まる様子が確認できる．学
習率 η = 10−5（中段）では，初期収束は依然として
NN が優勢だが，学習が進むにつれて両モデルの損失
差は縮小し，H = 500 では最終損失がほぼ一致した．
学習率 η = 10−6（下段）では，両モデルともに緩やか
な収束挙動を示し，全ての H において最終損失はほぼ
同一水準に達した．最終ステップにおける平均検証損
失を総合的に比較すると，いずれの条件でも一方が他
方を明確に上回る傾向は認められなかった．すなわち，
ヤコビ行列の回帰という本タスクでは，四元数表現が
理論的に回転情報を保持できるにもかかわらず，損失
最小化の観点で必ずしも優位性を発揮しないことが示
唆される．今後は，より深い QNN アーキテクチャの
探索や，四元数演算に適した正則化・初期化手法との
併用を検討し，四元数構造の帰納的バイアスを効果的
に活かすネットワーク設計指針の確立が求められる．
5 まとめ
本研究では, 関節角からヤコビ行列を予測する回帰
問題に対して, 四元数ニューラルネットワーク（QNN）
の有効性を検証した. 具体的には, MuJoCo シミュレー
タ上に構築した 6 自由度ロボットアームモデルを用い,
広範な関節角度サンプルに対応するヤコビ行列データ
を収集し, QNN と従来の実数値ニューラルネットワー
ク（NN）との比較を行った.

QNN は回転の構造的特徴を内部に保持したまま学
習できる点で理論的に有利とされるが, 数値実験の結
果, 学習の収束速度や最終的な予測精度において, NN
に対する明確な優位性は確認されなかった. 特に, 学習
率が大きい条件下では, QNN の学習がやや不安定にな
る傾向も見られた. これらの結果は, QNN の表現能力
が本タスクにおいて必ずしも直接的な性能向上に結び
つくとは限らず, モデル構造とタスク特性との整合性が



Fig. 3: Validation loss curves of the Neural Network (red) and Quaternion Neural Network (blue) under different
learning rates η and hidden layer sizes H. Each plot shows the average over 10 trials with different seeds.

極めて重要であることを示唆している.

今後の課題としては, より深層のネットワーク構造の
導入, 四元数演算に適した正則化手法の検討, およびロ
バスト性や汎化性能を評価するための実ロボット環境
での応用実験を通じて, QNN の有効性を引き出すため
の設計指針の確立を目指す必要がある. あわせて, 周期
的・構造的な性質を持つ入力データに対する学習手法
として, QNN を理論的に再評価する枠組みの構築も今
後の重要な課題である.
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Abstract– In multi-objective optimization problems, multimodality often arises, where multiple distinct
solutions in the decision space correspond to the same point in the objective space, making accurate Pareto
set (PS) estimation challenging. This paper proposes a novel PS estimation method that applies clustering to
known solutions in the decision space and independently constructs local response surfaces for each cluster.
By selectively estimating PS using these cluster-specific models based on direction vectors, the proposed
method can capture multiple modes that conventional approaches fail to represent. Experiments using stan-
dard multimodal benchmark problems (MMF1–8 and LIRCMOP1–2) demonstrate that the proposed method
achieves higher estimation accuracy than conventional methods and effectively suppresses the generation of
dominated solutions.

Key Words: Multi-objective optimization, multimodal problem, Pareto set estimation, clustering, response
surface modeling

1 はじめに

実世界の最適化問題の多くは，相反する複数の目的
関数を含む多目的最適化問題に分類される 1, 2)．一般
に，多目的最適化問題には単一の最適解は存在せず，代
わりに，目的関数間の最適なトレードオフを表す解集
合であるパレートセット（Pareto Set, PS）が存在す
る．多目的最適化の究極的な目標は，PS全体を獲得す
ることであるが，現実的には困難である．問題によって
は，PSの一部を見出すことすら容易ではなく，PS全
体を網羅するには，膨大な数の解を生成・評価する必
要がある．また，実世界の最適化問題においては，1つ
の解の目的関数値を算出するために多大な計算コスト
を要することも少なくない．このような場合には，得
られた限られた解から有用な知見を引き出す工夫が求
められる．その手段のひとつに，PS推定（Pareto Set
Estimation）5) がある．
PS推定は，既知の各解について，目的空間における
方向と変数空間における位置関係を，応答曲面によっ
て構築するものである．この方法は，変数空間における
PSの構造を推測する有効な手段である．しかし，PS
推定は，目的空間の各方向に対応する変数空間におけ
る位置を出力するため，1つの目的関数値ベクトルが
複数の変数値ベクトルに対応するようなマルチモダル
問題においては，推定される PSの精度が著しく低下
するという課題がある．
本稿では，マルチモダル問題における PS推定の精
度向上を目的として，クラスタリングを活用した新た
な PS推定法を提案する．提案法では，変数空間上の
既知の解集合をクラスタリングし，各クラスタごとに
独立して PS推定を行う．本手法の有効性を検証する
ために，マルチモダルなテスト問題であるMMF1–8 6)

および LIRCMOP1–2 7) を用いて実験する．

2 多目的最適化
変数ベクトル x = (x1, x2, . . . , xD) ∈ RD に対して

M 種類の目的関数 fi (i = 1, 2, . . . ,M)を内包する多
目的最適化問題は，次のように定式化される．

Minimize f(x) = (f1(x), f2(x), . . . , fM (x)) (1)

一般的に，各目的関数が相反するため，すべての目的関
数値を同時に最小化する解は存在しない．複数の目的間
の最適なトレードオフであるパレートフロント (Pareto
front, PF)を表すパレート最適解集合 (Pareto set, PS)
を獲得することが目標である．
PSのサイズは，問題によるものの無限の可能性があ
る．進化計算による多目的最適化 1, 2)では，限られた
数の解集合を出力することで PSを表現しようとする．
ただ，特に f(x)の算出コストが高い場合，多数の解を
獲得することに難しさが生じる．その結果，少数の解
によって，サイズが無限の可能性がある PSを表現せ
ざるを得なくなる．当然ながら，少数の解では，PSの
表現精度は落とさざるを得ず，意思決定者が満足でき
ない結果になり得る．
3 従来法：PS推定
3.1 概要
PS推定は，少数の既知の解から PSを推定する 5)．

PS推定は，Fig. 1に示す 2つの過程の (a)学習と (b)
推定に分かれる．左が変数空間，右が目的空間である．
青色の各既知解 (xi,f i) (i ∈ {1, 2, . . . , N})は，変数値
ベクトル xi と目的関数値ベクトル f i で構成され，変
数空間と目的空間の間で一対の関係になる．Fig. 1は，
N = 9の例である．また，各目的関数値ベクトル f iを
指す方向ベクトル ei を矢印で示した．
Fig. 1 (a)における学習過程では，既知解集合 P =
{(x1,f1), (x2,f2), . . . , (xN ,fN )}について，方向ベク
トル群 E = {e1, e2, . . . , eN}を入力，変数値ベクトル群
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(b) Estimatimation process

Fig. 1: Conventional Pareto set estimation 5)

X = {x1,x2, . . . ,xN}を出力とする応答曲面 x-model
を Kriging 3, 4) によって求める．
Fig. 1 (b)における推定過程では，赤矢印で示す膨
大な方向ベクトル群 Ê = {ê1, ê2, . . . } を応答曲面 x-
modelに入力し，推定変数ベクトル群 {x̂1, x̂2, . . . }を
得ることができる．
変数空間における位置 xiから目的空間の位置 f(xi)
を求める目的関数 f に対して，PS推定は，目的空間
における方向 êから変数空間における位置 x̂を求める
逆関数 f−1 を構築することになる．
3.2 方法
疑似コードを Algorithm 1に示す．入力は，既知
の解集合 P = {(x1,f1), (x2,f2), . . . , (xN ,fN )}であ
る．既知の解集合 P から，1行目は目的ベクトル群F，
2行目は変数ベクトル群X を取り出す．4–6行目は，既
知の各解の目的ベクトル f i の方向ベクトル ei を算出
し，既知解集合の方向ベクトル群 E に加える操作を繰
り返す．8行目は，既知解の方向ベクトル群 E を入力，
変数ベクトル群 X を出力とする応答曲面のKrigingモ
デル x-modelを構築する．これは，Fig. 1 (a)におい
て，目的空間における既知解の方向ベクトル (青矢印)
に対応する変数空間における位置 x(青丸)を学習する
処理に該当する．9行目は，生成する解集合Qを初期
化している．10–14行目は，一様分布する膨大な方向
ベクトル群 Ê における各方向 êに注目しながら解 x̂を
生成する．これは，Fig. 1 (b)において，目的空間にお
ける任意の方向ベクトル (赤矢印)に対応する変数空間

Algorithm 1 Conventional Pareto Set Estimation 5)

Require: Known solution set P = {(x1,f1), (x2,f2), . . . ,

(xN ,fN )}, a large unit vector set Ê = {ê1, ê2, . . . }
Ensure: Popoulation P ′

Learning Process

1: F = {f1,f2, . . . ,fN} ← Extract objective vectors (P)
2: X = {x1,x2, . . . ,xN} ← Extract variable vectors (P)
3: E ← ∅ ▷ Direction vectors of known solutions
4: for i← 1, 2, . . . , N do
5: ei ← f i/∥f i∥1 ▷ Direction vector of known f i

6: E ← E ∪ ei

7: end for
8: x-model ← Train PS model (E,X )

Estimation Process
9: Q ← ∅ ▷ Solutions generated by PS estimation

10: for each ê ∈ Ê do
11: x̂← x-model (ê)

12: f̂ ← f(x̂)

13: Q ← Q∪ (x̂, f̂)
14: end for
15: return P ′ ←Extract non-dominated (P ∪Q)

における位置 x̂(赤丸)を推定する処理に該当する．11
行目は，方向ベクトル êをKrigingモデル x-modelに
入力し，対応する推定変数ベクトル x̂を得る．12行目
は，推定変数ベクトル x̂を目的関数ベクトル f に入力
し，目的関数値ベクトル f̂ を得る．13行目は，新しい
解 (x̂, f̂)を解集合 Qに加える．10–14行目の処理を，
方向 êを変えながら繰り返す．15行目は，既知の解集
合 P と生成した解集合Qから非劣解集合 P ′を抽出し
て出力する．
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(a) Conventional Pareto set estimation 5)

x1

x
2

���������	�
�����
����

���	���������	�
�����
����

�������

���	


����������

����������
	
������

	
������

���
�︓���������	
�����

f
1

f 2

�������
��
�	�����
����

���	�������
��
�	�����
����

(b) Proposed Pareto set estimation

Fig. 2: Pareto set estimation of a multiodal problem

3.3 課題
従来のPS推定は，マルチモダル問題において，推定
精度が著しく低下するという課題がある．マルチモダ
ル問題は，変数空間における複数の点が，目的空間の
単一の点に写像される問題である．マルチモダル問題
の一例を Fig. 2 (a)に示す．目的空間におけるパレー
トフロント上の各点が，変数空間の 2点に対応してい
る．より具体的には，目的空間における各方向ベクト
ル êに対応する変数空間の点が，2つある．このよう
に，緑色の PSは 2つに分かれている．従来の PS推定
は，目的空間における各方向ベクトル êに対応する変
数空間の位置 x̂をひとつ求めるため，マルチモダルな
PSを出力できない．結果として，Fig. 2 (a)に示され
ているように，赤丸で示された推定解は，緑色で示さ
れる真の PSから大きく乖離している．
4 提案法：マルチモダルPS推定
4.1 概要
本稿では，マルチモダル問題におけるPS推定の実現
を目的とし，クラスタリングを用いたPS推定法を提案
する．提案法の概念図を Fig. 2 (b)に示す．提案法で
は，変数空間において既知の解集合 P をクラスタに分
割する．Fig. 2 (b)では，既知の解集合 P が，クラス
タ C1 = {x1,x3,x5,x7,x9}と C2 = {x2,x4,x6,x8}
に分かれる．次に，クラスタごとに応答曲面を構築す
る．Fig. 2 (b)では，xC1

-modelと xC2
-modelを構築

する．次に，双方の応答曲面に対して，一様に分布し
た膨大な方向ベクトル群 Ê を入力し，それぞれから推

定された赤い PSを得る．このように，異なる応答曲
面にそれぞれの方向ベクトル ê ∈ Ê を入力することで，
マルチモダル問題においても PSをより正確に推定で
きるようになる．

4.2 方法
提案法の疑似コードをAlg. 2に示す．従来法との差
異は赤字で示している．8行目では，既知の解集合を変
数空間上でクラスタ群 C = {C1, C2, . . . }に分類する．
本稿では，階層クラスタリング 8)を活用した．階層ク
ラスタリングの過程では，木構造のデンドログラムが
作成される．提案法においては，変数空間における解の
距離が近く，かつマルチモダルでないと判断されるクラ
スタの組み合わせから優先的に統合され，デンドログラ
ムが構築される．なお，2つのクラスタを統合した際に，
変数値の変動が単調でないと判定される場合には，それ
らはマルチモダルであるとみなし，同一クラスタとして
統合しない．Fig. 2 (b)の例では，このクラスタリング
処理によって，C = {C1, C2}に分類される．9–13行目
は，各クラスタCk ∈ Cについて，PS推定モデル xCk

-
modelを構築する．Fig. 2 (b)の例なら，xC1

-modelと
xC2

-modelを構築する．14行目は，大規模方向ベクト
ル群 Ê について，PS推定するための方向ベクトルに優
先度を付ける．具体的には，Alg. 3において，1行目
は，大規模方向ベクトル群 Ê の中から，要素に 1を含
む端の方向ベクトルを最優先に Ê ′として選ぶ．Fig. 2
(b)の例なら，Ê ′ = {ê1 = (0, 1), ê|Ê|=16 = (1, 0)}にな
る．2–5行目は，すでに選択した Ê ′から最も遠い方向



Algorithm 2 Proposed Pareto Set Estimation

Require: Known solution set P = {(x1,f1), (x2,f2), . . . ,

(xN ,fN )}, a large unit vector set Ê = {ê1, ê2, . . . }
Ensure: Popoulation P ′

Learning Process

1: F = {f1,f2, . . . ,fN} ← Extract objective vectors (P)
2: X = {x1,x2, . . . ,xN} ← Extract variable vectors (P)
3: E ← ∅ ▷ Direction vectors of known solutions
4: for i← 1, 2, . . . , N do
5: ei ← f i/∥f i∥1 ▷ Direction vector of known f i

6: E ← E ∪ ei

7: end for
8: C = {C1, C2, . . . } ← Clustering (E,X )
9: for each Ck ∈ C do
10: ECk

← Extract direction vectors (Ck)
11: XCk

← Extract variable vectors (Ck)
12: xCk

-model ← Train PS model (ECk
,XCk

)
13: end for
14: Ê ′ ← Prioritize Directions (Ê) ▷ Algorithm 3

PS Estimation
15: Q ← ∅ ▷ Solutions generated by PS estimation

16: for each ê ∈ Ê ′ do
17: C′ ← Select Target Clusters (ê, C)▷ Algorithm 4
18: for each Ck ∈ C′ do
19: x̂← xCk

-model (ê)

20: f̂ ←Evaluation(x̂)

21: Q ← Q∪ (x̂, f̂)

22: if |Q| ≥ |Ê| then
23: return P ′ ←Extract non-dominated (P ∪Q)
24: end if
25: end for
26: end for

Algorithm 3 Prioritize Directions

Require: A large unit vector set Ê = {ê1, ê2, . . . , ê|Ê|}
Ensure: Prioritized unit vector set Ê ′
1: Ê ′ ← Pick extreme vectors with a element of 1 from Ê
2: while |Ê ′| < |Ê| do
3: ê← Pick the farthest vector from Ê
4: Ê ′ ← Ê ′ ∪ ê
5: end while
6: return Ê ′

ベクトル êから優先的に êを Ê ′ に繰り返し追加する．
Fig. 2 (b)の例なら，Ê ′ = {ê1, ê|Ê|=16, ê8, ê12, . . . }と
いう具合になる．これにより，大規模方向ベクトル群
Ê を網羅できなかったとしても，目的空間において均
一に分布する方向ベクトルを対象に，PS推定を実行す
る．Alg. 2に戻ると，16–26行目において，優先度付
けした大規模方向ベクトル群 Ê ′の順番に各方向ベクト
ル ê ∈ Ê ′に注目しながら PS推定を実行する．17行目
は，注目する方向ベクトル êに対応するクラスタ群 C′
を取り出す．具体的には，Alg. 4において，各クラス
タ Ck の既知の解集合の方向ベクトルの範囲に注目す
る方向ベクトル êが含まれる場合は，該当するクラス
タ Ck を C′に追加する処理を繰り返す．Alg. 2に戻る
と，18–25行目は，取り出したクラスタ群 C′の各クラ
スタ Ck ∈ C′の応答局面 xCk

-modelから，注目する方
向ベクトル êに対応する変数ベクトル x̂を求める．つ
まり，注目するひとつの方向ベクトル êに対して，|C′|
個の変数ベクトルを生成する．22行目では，|Ê |個の
変数ベクトルを生成した時点で，アルゴリズムを終了
する．つまり，大規模方向ベクトル群 Ê を網羅しない
場合がある．そのため，14行目において，目的空間に
おける均一性の高い方向ベクトルの順番を求めている．

Algorithm 4 Select Target Clusters

Require: A direction vector ê, Cluster set C = {C1, C2, . . . }
Ensure: Selected clusters C′
1: C′ ← ∅
2: for each Ck ∈ C do
3: if Direction range of cluster Ck involves ê then
4: C′ ← C′ ∪ Ck

5: end if
6: end for
7: return C′

4.3 期待される効果
提案法は，変数空間上で既知の解集合 P をクラスタ
リングすることにより，マルチモダリティを識別する．
各クラスタCkごとにxCk

-modelを構築することで，変
数空間における局所的な応答曲面を得る．さらに，各
xCk

-modelに方向ベクトル êを入力して局所的に PS
推定を行うことで，マルチモダルな変数空間において
も PS推定の精度向上が期待できる．
5 実験設定
5.1 方法
従来法 5)と提案法を比較する．大規模方向ベクトル
群 Ê のサイズは，|Ê | = 1000とした．
5.2 問題
マルチモダルな多目的テスト問題として，M = 2
目的 D = 2変数の MMF1–8 6)，およびM = 2目的
D = 30変数の LIRCMOP1-2 7)を用いた．既知解集合
P は，進化計算によって十分に最適化した結果を用い
た．各問題における既知解集合 P のサイズ（|P| = N）
を Table 1に示す．
5.3 評価
本稿では，評価指標として Hypervolume（HV）9)

を用いる．HV は，得られた解集合 P と参照点 r に
よって囲まれる目的空間上の M 次元体積である．本
稿では，M = 2 の目的問題のみを扱うため，HV は
2次元の面積となる．HV は，真のパレートフロント
に対する収束性と多様性が高い解集合 P ほど大きくな
る．さらに，P のサイズが大きい場合にも，HV は高
くなる傾向がある．各問題に対して得られたすべての
解集合において，目的関数値を [0,1]に正規化し，参照
点 r = (1.1, 1.1)を用いてHV を算出した．
6 実験結果と考察
6.1 変数空間における解集合クラスタ
MMF1，MMF2，MMF4問題に注目し，既知の解集
合 P の変数空間における分布および，提案法によって
得られたクラスタリング結果を Fig. 3 に示す．なお，
Fig. 1および 2の左図と同様に，変数空間に方向ベク
トルの要素 e1 の軸を加えて表示している．
これらの結果から，既知の解集合Pは，MMF1およ
びMMF2では 2クラスタ，MMF4では 4クラスタに
分類されることがわかる．
6.2 変数空間における解分布
MMF1，MMF2，MMF4問題における，得られた解
集合 P の変数空間での分布を観察する．Fig. 4に従来
法，Fig. 5に提案法の結果を示す．図中の青点は既知
の解，赤点は PS推定によって得られた解を示す．
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Fig. 3: Clusters obtained by the proposed method

(a) MMF1 (b) MMF2 (c) MMF4

Fig. 4: Known solutions and estimated ones obtained by the conventional method 5)

(a) MMF1 (b) MMF2 (c) MMF4

Fig. 5: Known solutions and estimated ones obtained by the proposed method

Fig. 4 に示すように，従来法による推定解（赤点）
は，複数の既知解（青点）のクラスタの外側に多く分
布していることがわかる．一方，Fig. 5に示すように，
提案法による推定解（赤点）は，各既知解クラスタ（青
点）の内部に分布していることが確認できる．
6.3 目的空間における解集合
得られた解集合 P の目的空間における分布について
議論する．
Fig. 6および Fig. 7は，従来法および提案法によっ
て得られた解集合の分布を示す．Fig. 6に示す従来法
の結果からは，劣解が多数生成されていることがわか
る．これは，Fig. 4に示すように，従来法が既知の解集
合のクラスタの外側に解を生成していることに起因す
る．一方，Fig. 7に示す提案法の結果からは，劣解の生
成が抑制されていることが確認できる．これは，Fig.
5に示すように，提案法が既知の解集合のクラスタ内
に解を生成しているためである．
従来法および提案法により得られた解集合 P に基づ
くHV の値をTable 1に示す．ここでは，両手法のう

ちHV が高い方を太字で示している．これらの結果か
ら，提案法は多くの問題において従来法を上回るHV
を達成していることがわかる．ただし，LIRCMOP1に
おいては，マルチモダル性が複雑でクラスタ数が多く
なった影響により，提案法の実行が困難であった．ま
た，MMF6のようにマルチモダル性が極めて複雑な問
題では，提案法は従来法よりも低いHV を示した．一
方，LIRCMOP2のように変数次元が高い問題におい
ても，提案法は従来法より高いHV を達成できること
が確認された．
7 まとめ
本稿では，マルチモダル問題におけるPS推定の精度
向上を目的として，クラスタリングを用いたPS推定法
を提案した．提案法は，変数空間上で既知の解集合を
クラスタリングし，各クラスタごとに独立にPSを推定
する．マルチモダルなテスト問題であるMMF1–8およ
び LIRCMOP1–2を用いた実験の結果，提案法は，マ
ルチモダル性が高い問題を除き，劣解の生成を抑制で
きることを明らかにした．これは，変数空間において



(a) MMF1 (b) MMF2 (c) MMF4

Fig. 6: Known solutions and estimated ones obtained by the conventional method 5)

(a) MMF1 (b) MMF2 (c) MMF4

Fig. 7: Known solutions and estimated ones obtained by the proposed method

Table 1: HV values of the obtained solutions P ′

MMF1 MMF2 MMF3 MMF4 MMF5 MMF6 MMF7 MMF8 LIRCMOP1 LIRCMOP2

Number of variables D 2 2 2 2 2 2 2 2 30 30
Number of known solutions N 98 28 31 48 40 98 48 48 40 40

Conventional Method 0.7214 0.7037 0.7060 0.4455 0.7096 0.7202 0.7229 0.3488 0.2269 0.3608
Proposed Method 0.7225 0.7140 0.7201 0.4481 0.7121 0.7196 0.7232 0.3502 – 0.3627

既知の解集合を分布に基づいてクラスタに分類し，各
クラスタ内に解を生成することによって達成された．
今後は，より複雑なマルチモダル性を有する問題や，
次元数の多い問題において，解の推定精度を高める手
法の構築に取り組む．
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