Safety Argument based on GSN for Automotive Control Systems

Yutaka Matsubara
Nagoya University
yutaka@ertl.jp
02.26.2014
Agenda

1. Safety argument in ISO26262
2. Requirements related to safety argument
3. Goal Structuring Notation (GSN)
4. Examples of GSN
5. Discussion
6. Conclusion
Safety argument in ISO 26262

Product argument
• A safety argument that argues safety based directly on the features of the item implemented.

Process argument
• A safety argument that argues safety based on the features of the development and assessment process.

We focused on product argument for safety of an Electric Power Steering (EPS) control system.
EPS control system

Main functions
• EPS uses an electric motor to assist the driver of a vehicle.
• Sensors detect the position and torque of the steering column, and an ECU applies assistive torque via the motor.
 • This allows varying amounts of assistance to be applied depending on driving conditions.

Our activities
• Hazard analysis and risk assessment
• Specifying safety goals, functional safety requirements (FSRs), and technical safety requirements (TSRs).
• Verification and Validation of FSRs and TSRs

Notice: This diagram is not related to real products.
Requirements related to safety argument

Safety Case
• The purpose of a safety case is to provide a clear, comprehensive and defensible argument, supported by evidence to guarantee safety of an item.
• A safety case for ASIL (A), B, C or D should be generated as a work product during the safety lifecycle (part.2-6.4.6).

Management of Safety Requirements
• Objectives are to ensure
 • the correct specification of safety requirements with respect to their attributes and characteristics, and
 • consistent management of safety requirements during the safety lifecycle.
• To achieve the above objectives, requirements of management of safety requirements are listed in part. 8 sec. 6.
Structure of safety requirement

Hazard analysis and risk assessment

Specification of safety goals

Specification of FSRs

Specification of TSRs

Specification of software safety requirements

Specification of hardware safety requirements

We used GSN to manage these requirements.

All safety requirements should be appropriately described and managed.
Management of safety requirements

To comply with the followings, appropriate notation and management techniques are required.

a) Hierarchical structure
 • The safety requirements must be structured in several successive levels.

b) Organizational structure
 • The safety requirements of each level are grouped together, which usually corresponds to the architecture.

c) Completeness
 • The safety requirements at one level fully implement all of the safety requirements of the previous level.

ISO 26262:part 8 ,clause 6.4.4.3
Management of safety requirements (cont.)

d) External consistency
 • Multiple safety requirements must not contradict each other.

e) No duplication
 • The contents of the safety requirements are not repeated in any other safety requirements at a different level of the hierarchical structure.

f) Maintainability
 • The set of requirements can be easily modified or extended, e.g., by the introduction of new versions of requirements or by adding/removing requirements from the set of requirements.

How can we achieve the above requirements?
Goal Structuring Notation (GSN)

What’s GSN
- GSN is a graphical argument notation.
- It can be used to document explicitly the elements and structure of an argument and the argument’s relationship to evidence.

Main notations
- Goal(Requirement): the claims of the argument, or the safety objectives that must be addressed to assure safety.
- Strategy(Argument): how the evidence indicates compliance with the requirements.
- Context: identifying the basis for the argument presented.
- Solution(evidence): evidence to guarantee that a goal could be satisfied.
Example of GSN: Organizational structure

Safety Goal FSR_001

Assigned ASIL of FSR_001

the basis for FSR_001

the element to which FSR_001 was allocated

FSR_001 was divided to several requirements and allocated to each element.

Evidence showing that the TSR_001_003 was satisfied.
Example of GSN: ASIL decomposition

TSR_001_001 was decomposed to A(D) requirement and C(D) requirement.

The requirement for independence between the decomposed requirements was added.
Good points of GSN compared to natural languages

• The relationships between a goal and sub-goals could be clearly described by *argument* elements. → Req. b)

• The completeness of the safety requirements specifications becomes obvious. → Req. c)

• Duplication and contradiction of safety requirements specifications could be avoided by reviewing the relationships between the specifications. → Req. d),e)

• A hierarchical structure is easily achieved by a *system* element. → Req. a)

GSN was one of appropriate techniques for describing a safety case and management of safety requirements.
Weak points

• The semantics of the *context* elements should be restricted because the elements can be used with various meanings. \(\rightarrow\) Req. f)

• Tool cooperation should be improved to ensure traceability.
 • For example, the GSN description tool should work with the traceability management tools, hazard analysis tools, system architectures, and so on.

• For ASIL C or D requirements, other semi-formal or formal methods may be needed because contents of each element of GSN are described in natural languages.
Requirements for notation of safety requirements

Notation methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>ASIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1a Informal notations for requirements specification</td>
<td>++</td>
</tr>
<tr>
<td>1b Semi-formal notations for requirements specification</td>
<td>+</td>
</tr>
<tr>
<td>1c Formal notations for requirements specification</td>
<td>+</td>
</tr>
</tbody>
</table>

ISO 26262-8:2011, Table.1

Practical situation in Japan

• The safety requirements have been described in **natural languages** in many cases.

To develop items with ASIL C or D, semi-formal notations should be used instead of natural languages.
Definition of “Semi-formal” notation
• Descriptive techniques where the syntax is completely defined but where the semantics definition can be incomplete.

Examples
• System Analysis and Design Techniques (SADT)
• Unified Modeling Language (UML)
 • Widely used in practical situation

These methods are suitable for design of item and software, but not suitable for description of requirements.

→ A method that is suitable for description of safety requirements is required.
Conclusion

• We presented a case study of a safety argument description for the EPS control system by GSN.
• We compared the capacities of natural languages and GSN for describing the safety case and management of safety requirements specifications.
• Based on the case study, we confirmed that GSN was an appropriate technique for these purposes.
• However, some future works were found to spread GSN in practical situations.

Thank you for your attention. Any question?
References

4. Y. Matsuno: D-Case Editor: http://www.il.is.s.u-tokyo.ac.jp/deos/dcase/